在平时的工作学习中,我们总少不了进行工作计划写作的机会,想写好工作计划类型的文章,不妨来参考一下本文。好范文为大家带来了《八上数学教学计划3篇 人教版八年级数学教学计划》,希望对你的范文写作有所帮助。
下面是好范文小编分享的八上数学教学计划3篇 人教版八年级数学教学计划,供大家阅读。
八上数学教学计划1
对于老师制作好的教学计划,有利于新课的讲授,小编为大家编辑了青岛版八年级上学求数学教学计划,希望对大家有所帮助。
一、学情分析以及存在的问题:
我从事七年级一、二两个班的数学教学,从期末考试成绩来看,部分学生的成绩还算可以,有一半学生成绩相当糟糕,分析原因,主要是七年级下学期期中考试后知识学习太快,学习跟不上;还有就是练习的量太少,所以这学期的主要突破口是加强对学生的辅导,加大学生的练习力度。在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能投入到自学和讨论中,积极的探讨新知,也有少数学生学习积极性不高,有空就偷着玩,不爱学习。在教学方面,平时对学生的练习抓的不够紧,没有及时跟上辅导,致使有些学生越拉越远。
二、设计思路:以《初中数学新课程标准》为依据,全面推进素质教育。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
三、教学目标:
1.了解全等三角形的.概念与性质,探索三角形全等的判定方法,会利用三角形全等解决一些简单的实际问题。学习几类简单的尺规作图。
2.理解轴对称图形的概念,等腰三角形的轴对称性,线段的垂直平分线和角的平分线的性质;掌握线段的垂直平分线和角的平分线的尺规作图方法;掌握“等腰三角形的两底角相等”、 “等腰三角形的三线合一”.
3.了解分式和分式方程的概念;能熟练地进行分式的约分、通分和加减乘除运算,会解可化为一元一次方程的分式方程;会解有关分式方程的应用题。
4.理解众数、中位数的概念;掌握求加权平均数的两个计算公式,会计算加权平均数。
5.通过具体实例,了解定义、命题、定理、推论的意义,会区分命题的条件与结论,学会综合法证明的格式,会证明以前学过的一些重要定理。
四、教材分析:本学期教学内容,共计五章,第一章《全等三角形》,本章的主要内容是全等三角形,怎样判定三角形全等,尺规作图。第二章《图形的轴对称》,本章的主要内容是轴对称图形的概念及其性质,线段的垂直平分线及其性质,角的平分线及其性质,等腰三角形及等边三角形。第三章《分式》,本章是在学习了整式的加减乘法运算和多项式的因式分解的基础上学习的。主要内容是分式的概念与基本性质,分式的约分与乘法、除法,分式的通分与加法、减法,比和比例,分式方程。第四章《数据分析》,本章内容主要包括加权平均数、中位数、众数、数据的离散程度、方差、用计算器计算平均数和方差。第五章《几何证明初步》本章内容包括定义与命题、为什么要证明、什么是几何证明、平行线的性质定理与判定定理、三角形的内角和定理、几何证明举例。
五、教学重点与难点:
重点:
(1)三角形全等的几种判定方法.
(2)线段的垂直平分线和角的平分线的性质,等腰三角形的性质.
(3)分式的基本性质,分式的加减乘除运算法则.
(4)加权平均数、中位数、众数、方差的概念与计算.
(5)综合法证明的格式,会证明三角形内角和定理、线段垂直平分线的性质定理与判定定理、角平分线的性质定理与判定定理。
难点:
(1)三角形全等的几种判定方法。
(2)等腰三角形的性质的理解.
(3)连比,分式方程的增根,列出可化为一元一次方程的分式方程解应用问题.
(4)加权平均数的两个计算公式,平均数、中位数、众数的区别与联系,方差的计算公式.(5)学会综合法证明的格式,辅助线的添设。
六、具体措施:
1、加强教学,培养学生的自学能力,面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
4、课后辅导实行流动分层。七、本学期教学进度
相信大家对于上文为大家所推荐的青岛版八年级上学求数学教学计划,一定仔细阅读了吧,祝大家学习愉快。
八上数学教学计划2
一、学生情况分析:
对八年级的学习情况与期末测试成绩进行分析,可以看出学生已经初步掌握二次根式的运算,能利用一元二次方程来解一般的应用题,对数据的频数及其分布有了初步的认识,大多数学生能掌握平行四边形与特殊平行四边形的性质与判定,具备了一定的逻辑推理能力。在数学的思维方面,学生正处于形象思维向逻辑抽象思维的过度提升期,教学中提倡数形结合,让学生适当思考部分有利于思维提高的练习,无疑是对学生终身有用的;在学习习惯方面,部分学生的不良习惯得到了纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业等,都应得到强化;在学习兴趣方面,大部分学生对数学学习的积极性较高,但仍有部分学生对数学信心不足,因此开学初要给学生树信心,刚开始起点宜低,讲解宜慢,使学生适应九年级的数学学习。
二、教材内容分析:
第一章 反比例函数
本章的主要内容有反比例函数的概念、解析式、图象、性质及其应用. 本章的重点是反比例函数的图象与性质;反比例函数的图象有两个分支,给反比例函数的性质带来复杂性,是本章教学的难点.本章教学时应渗透数形结合的数学思想.
第二章 二次函数
本章的主要内容有二次函数的概念、二次函数的图象、性质和应用,它们在日常生活和生产实际中有着广泛的应用. 本章的重点是二次函数的图象与性质的理解和掌握;二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换以及二次函数性质的灵活应用是本章教学的难点.本章教学时要充分运用实例帮助学生正确理解二次函数的概念,体会函数思想.
第三章 圆的基本性质
本章的主要内容有圆的有关概念、圆的性质,以及弧长、扇形的面积,圆锥的侧面积和全面积计算. 本章的重点是有关弦、弧、圆心角和圆周角的.基本性质;
圆的基本性质的几个主要定理的探究和证明是本章教学的难点.在本章教学中要使学生从事观察、测量、折叠、平移、推理等活动,注意理论和实践相结合、抽象与直观相结合,分步设疑,巧设阶梯,以达学生理解.
第四章 样本与数据分析初步
本章的主要内容有比例的基本性质、比例线段,相似三角形的条件、性质及其应用,相似多边形和图形的位似. 本章的重点是相似三角形的判定和性质;利用相似三角形解决图形中的比例线段问题是本章教学的难点.
本章教学时应注意充分运用类比的思想;继续重视观察、实验的方法等.
三、具体措施:
1、做好教材钻研工作。认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。
3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。
4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。
5、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
八上数学教学计划3
一、 教材分析
(一)教材所处的地位
这节课是义务教育课程标准实验教科书(北师大)八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、 能说出勾股定理的内容。
2、 会初步运用勾股定理进行简单的计算和实际运用。
3、 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:
教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—猜想结论—实验操作—归纳总结—问题解决—课堂小结—布置作业七部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、 教学过程设计:
(一)提出问题:
首先创设这样一个问题情境:强大的台风使得一座高压线塔在离地面9米处断裂,塔顶落在离塔底部12米处,高压线塔折断之前有多高?
问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)猜想结论。
教师用计算机演示:
(1)在△ABC中,∠ACB=90°,∠A,∠B,∠C所对边分别为a,b和c,使△ABC运动起来,但始终保持∠ACB=90°,如拖动A点或B点改变a,b的长度来拖动AB边绕任一点旋转△ACB等。
(2)在以上过程中,始终测算 ,各取以上典型运动的某一两个状态的测算值列成表格,让学生观察三个数之间有何数量关系,得出猜想。
(三)实验操作:
1、投影课本图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的.等腰直角三角形来求等等,各种方法都予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,再剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习极有帮助。
3、给出一个两直角边长分别为1.6,2.4这种含小数的直角三角形,对学生有一定的挑战性。让学生验证是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(四)归纳总结:
1、归纳
通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、总结
勾股定理内容得出后,引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。
(五)问题解决:
让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(六)课堂小结:
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(七)布置作业:
课本P7习题1.1-- 2,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。
四、 设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—猜想结论—实验操作—归纳验证—问题解决—课堂小结—布置作业七部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除实际问题和课本习题以外,我准备设计一道开放题,大致思路是已知直角三角形的两条边,求出与这个三角形所有相关的结论。
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。