想写好工作总结类型的文章,不妨来参考一下本文。好范文为大家带来了《人教版初三数学知识点总结(优质15篇)》,希望对你的范文写作有所帮助。
人教版初三数学知识点总结(通用15篇)
人教版初三数学知识点总结 篇1
等腰三角形的判定方法
1.有两条边相等的三角形是等腰三角形。
2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
标准差与方差
极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。
计算器——求标准差与方差的一般步骤:
1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。
2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;
5.标准差的平方就是方差。
人教版初三数学知识点总结 篇2
1.解直角三角形
1.1.锐角三角函数
锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有
1.2.锐角三角函数的计算
1.3.解直角三角形
在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的'位置关系
2.1.直线与圆的位置关系
当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:
直线与圆相切的判定定理:
经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:
经过切点的半径垂直于圆的切线。
2.2.切线长定理
从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆
与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图
3.1.投影
物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图
物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
3.3.由三视图描述几何体
三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。
3.4.简单几何体的表面展开图
将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。
圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。
圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。
人教版初三数学知识点总结 篇3
一学期以来,本人在领导的关心帮助下,在老师同事们的大力支持下,较好的完成了我的本职工作。为了能在以后的工作中更好的发挥自己的优势,及时总结经验,吸取教训,总结前段工作如下:
一、思想建设:
积极参加政治学习,关心国家大事,拥护党的各项方针政策,遵守劳动纪律,团结同志,热心帮助同志;教育目的明确,态度端正,钻研业务,勤奋刻苦;班主任工作认真负责,关心学生,爱护学生,为人师表。
二、业务学习
1、积极学习各种教育理论,认真做好笔记,以充实自己,以便在工作中以坚实的理论作为指导;积极写好教育教学随笔,积累写作素材,反思自己的教育教学行为。
2、积极参加各种外出业务学习活动,开拓视野,增加知识。
三、教育教学
1、备课
认真研究教材,提前两天备好课,写好教案。备课时认真钻研教材、教参,学习好课程标准,力求吃透教材,找准重点、难点。为了上好一节课,我充分利用学校的教学网络,上网查资料,集中别人的优点确定自己的教学思路,为了学生能更直观地感受所学的知识内容,我积极查找课件,制作课件,准备、制作教具。
2、上课
上好课的.前提是做好课前准备,不打无准备之仗。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。培养学困生的学习兴趣,有难度的问题找优等生;一般问题找中等生;简单些的总是找学困生回答。桌间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。
3、辅导
我利用课余时间对学生进行辅导,不明白的耐心讲解,及时查缺补漏。并与家长联系,及时沟通情况,使家长了解情况,以便在家里对孩子进行辅导。
4、作业
我把每天的作业适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。并做到全批全改。
四、努力方向:
1、加强自身基本功的训练,课堂上做到精讲精练,注重对学生能力的培养。
2、对差生多些关心,多点爱心,再多一些耐心,使他们在各方面有更大进步。
3、在教学上下功夫,努力使班级学生的成绩在原有的基础上有更大的进步。
人教版初三数学知识点总结 篇4
1.轴对称:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:
如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:
①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上.
注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:
①等腰三角形两底角的平分线相等;
②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;
④等腰三角形底边上的中点到两腰的距离相等。
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:
(1)等边三角形的三个角都相等,并且每个角都等于60。
(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有三线合一。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。
判定定理:有一个角是60的等腰三角形是等边三角形。
说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。
人教版初三数学知识点总结 篇5
我不是数学家,我对数学的了解也不多,但我想说说我所学的数学。
学习数学是一件轻松快乐的事情。在数学的学习中,“大事化小小事化了”的思维方式很重要。比如你撞见一道相当复杂的题目,那么把它分化成几个简单的小问题无疑是很明智的。
当然,就如同意盖大楼一样,基础十分重要。就现在的考试来说,基础题亦是重点。只有掌握基础知识,才能灵活运用,并对各种题目进行变形、探究。
什么是探究中最重要的呢?我认为是挑战精神。只要有挑战精神才能让你不畏难点,攻破难点,急速向前。但挑战精神不是万能药,也不是一味地蛮干,也要伴随着谨慎的思考,这才是终极奥义。
人教版初三数学知识点总结 篇6
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
人教版初三数学知识点总结 篇7
1.数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏)2)有标准
2.非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:
①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4.相反数:
①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:
①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:
①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;
③数a的绝对值只有一个;
④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
人教版初三数学知识点总结 篇8
一学期来,本人担任初三数学教学,在教学期间认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断提高自己的业务水平,充实自己的头脑,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,教育民主,使学生学有所得,学有所用,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成了教育教学任务。
1、要提高教学质量,关键是上好课。为了上好课,我做了下面的工作:
⑴课前准备:备好课。
①认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
⑵课堂上的情况。
组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。
2、要提高教学质量,还要做好课后辅导工作,初中的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的头,或帮助整理衣服。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。
3、积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。
4、培养多种兴趣爱好,到图书馆博览群书,不断扩宽知识面,为教学内容注入新鲜血液。
5、"进无足赤,人无完人",在教学工作中难免有缺陷,例如,课堂语言平缓,平时考试较少,语言不够生动。
在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量。一年来,在各位领导和老师的热心支持和帮助下,我认真做好教学工作,积极完成学校布置的各项任务。
人教版初三数学知识点总结 篇9
三角函数关系
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考数学知识点
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数k的符号k>0k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。
①x的取值范围是x0,
y的取值范围是y0;
②当k<>
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数的几何意义
设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则:
(1)△OPA的面积.
(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的'面积都保持不变。
人教版初三数学知识点总结 篇10
1、概念:
把一个图形绕着某一点O转动一个角度的`图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
旋转三要素:旋转中心、旋转方面、旋转角。
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等。
(3)两个对应点与旋转中心的连线段的夹角等于旋转角。
3、中心对称:
把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
5、中心对称图形:
把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
6、坐标系中的中心对称
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P(—x,—y)。
人教版初三数学知识点总结 篇11
学期工作情况回顾本学期以来,本人担任九年级(4)班的数学教学及班主任工作,在教学期间不断提高自己的业务水平,严格要求学生,尊重学生,发扬教学民主,教育民主,使学生学有所得,学有所用,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务,我所任教的班在期末考试中列全级第一。
一、思想方面:
努力学习党的各项政策,贯彻执行党的教育方针,服从学校领导的安排,遵守学校的各项规章制度。同时不断的提高自己的思想觉悟,为人师表,爱岗敬业。坚守高尚的教师情操,发扬无私奉献的精神。
二、积极参与教研:
集体的力量是无穷的,备课组的老师相互支持和鼓励,彼此交流学习,积累了不少好的经验。互帮互学,取长补短,有效保证了教研的质量。
三、教育教学方面:
认真备好每节课。课后认真作好总结,及时从课堂教法和学生的反映情况总结出每节课的得与失,从而提高自己的教学水平。我认真研究教材,力求准确把握难重点,难点。课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,从而使学生能够顺利地完成每一节的学习任务,使每一节课都学有所得,
四、营造良好的教与学环境:
中考形势的严峻带来各种压力,使学生的"厌学"情绪比以往任何时候都强。不管优生和学困生,他们的学习都是被动型的。而学生是学习的主体,主体能动性没有调动起来,我们教师的工作怎样努力也没用,这就迫使我们去研究学生的心理,找出适合学生心理特征的教法。
五、上好每一节课:
为了提高教学质量,提高学生学习的效果,注重学生主动性的发挥,发散学生的思维,注重综合能力的培养,有意识的培养学生的思维的严谨性及逻辑性,在教学中提高学生的思维素质。保证每一节课的质量。
六、认真及时辅导:
教育的最终目标是使受教育者学会自己学习,自学成才。有良好的学习习惯是实现这一目标的重要保证,可见好习惯养成性教育的重要性。我注重狠抓习惯教育,让学生养成课前预习准备,课后复习巩固,独立完成作业,按时上交作业。
以上是我这学期的工作总结,不足之处清各位领导及老师指正。在以后的工作中,我会再接再厉,克服不足,扬长避短,争取更好的成绩。在这辞旧迎新的时刻,让我们回望过去,总结经验,汲取教训,为明年的中考而准备吧。
存在的问题或不足
1、总体成绩尚可,但部分同学偏科需要注意。
2、学生的厌烦心理比较明显,需要细心引导。
3、作业的查阅不够及时。
4、学生的个别帮扶不到位。
今后努力方向
1、一如既往的抓学生成绩。
2、搞好习题选取在最后的有限时间内追求最佳效果。
3、分层帮扶,使优生更优,考出优异的成绩。
4、协助班主任做好考前的心理辅导。
5、努力使每位学生都成功。
人教版初三数学知识点总结 篇12
1、图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2、相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3、相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4、位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
人教版初三数学知识点总结 篇13
1、抛物线是轴对称图形。对称轴为直线x=—b/2a。
对称轴与抛物线唯一的.交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2、抛物线有一个顶点P,坐标为:P(—b/2a,(4ac—b^2)/4a)当—b/2a=0时,P在y轴上;当=b^2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6、抛物线与x轴交点个数
=b^2—4ac0时,抛物线与x轴有2个交点。
=b^2—4ac=0时,抛物线与x轴有1个交点。
=b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=—bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)
人教版初三数学知识点总结 篇14
本学期,我继续担任初三两个班的数学教学工作。一学期来,我从各方面严格要求自己,积极向有经验的教师请教,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步,现对本学期教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教训工作更上一层楼。
一、认真备课,不但备学生而且备教材备教法,根据教材
内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
二、增强上课技能
提高教学质量,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
三、积极实践新课改
加强学生小组合作学习的研究与应用,课堂变成学生的课堂,并注重网络教学中的应用。
四、虚心请教其他老师。在教学上,有疑必问。
在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
五、真批改作业:布置作业做到精读精练。
有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
六、做好课后辅导工作,注意分层教学。
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学平的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
七、积极推进素质教育。
目前的考试模式仍然比较传统,这决定了教师的教学模式要停留在应试教育的层次上,为此,我在教学工作中注意了学生能力的培养,把传受知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
总之,在教学的过程中我不断反思,不断创新,使不同的学生得到不同的发展。
人教版初三数学知识点总结 篇15
1、圆、圆心、半径、直径、圆弧、弦、半圆的定义
2、垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5、点和圆的位置关系
点在圆外
点在圆上d=r
点在圆内d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6、直线和圆的位置关系
相交d
相切d=r
相离d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7、圆和圆的位置关系
外离d>R+r
外切d=R+r
相交R—r
内切d=R—r
内含d
8、正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9、弧长和扇形面积
弧长
扇形面积:
10、圆锥的侧面积和全面积
侧面积:
全面积
11、(附加)相交弦定理、切割线定理
第五章概率初步
1、概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。
2、用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3、用频率去估计概率