想写好工作总结类型的文章,不妨来参考一下本文。好范文为大家带来了《高中数学集合知识总结(精选18篇)》,希望对你的范文写作有所帮助。
高中数学集合知识总结(精选18篇)
高中数学集合知识总结 篇1
知识点概述
本节包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。
知识点总结
方法:常用数轴或韦恩图进行集合的交、并、补三种运算
1、包含关系子集
注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA
2、不含任何元素的集合叫做空集,记为
规定:空集是任何集合的子集,空集是任何非空集合的真子集
3、相等关系(55,且55,则5=5)
实例:设A={xx2—1=0}B={—11}元素相同
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
常见考点考法
集合是学习函数的基础知识,在段考和高考中是必考内容。在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。
常见误区提醒
1、集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。空集是任何集合的子集,是任何非空集合的真子集。
2、集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。
3、集合的运算注意端点的取等问题。最好是直接代入原题检验。
4、集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足互异性而导致结论错误。
高中数学集合知识总结 篇2
重点知识归纳、总结
(1)集合的分类
(2)集合的运算
①子集,真子集,非空子集;
②A∩B={∈A且x∈B}
③A∪B={∈A或x∈B}
④A={∈S且xA},其中AS.
2、不等式的解法
(1)含有绝对值的不等式的解法
①x0)-a
x>a(a>0)x>a,或x<-a.
②f(x)
f(x)>g(x)f(x)>g(x)或f(x)<-g(x).
③f(x) ④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值.如解不等式:x+3-2x-1<3x+2. 3、简易逻辑知识 逻辑联结词“或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤。 (2)复合命题的真值表 非p形式复合命题的真假可以用下表表示. p非p 真假 假真 p且q形式复合命题的真假可以用下表表示. p或q形式复合命题的真假可以用下表表示. (3)四种命题及其相互之间的关系 一个命题与它的逆否命题是等价的. (4)充分、必要条件的判定 ①若pq且qp,则p是q的充分不必要条件; ②若pq且qp,则p是q的必要不充分条件; ③若pq且qp,则p是q的充要条件; ④若pq且qp,则p是q的既不充分也不必要条件. 一、集合间的关系 1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。 2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。 3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。 子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系 二、集合的运算 1.并集 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 2.交集 交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 3.补集 三、高中数学集合知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B} 4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 注意:①?A,若A≠?,则?A; ②若,,则; ③若且,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 四、数学集合例题讲解: 【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系 A)M=NPB)MN=PC)MNPD)NPM 分析一:从判断元素的共性与区别入手。 解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z} 对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。 分析二:简单列举集合中的元素。 解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。 =∈N,∈N,∴MN,又=M,∴MN, =P,∴NP又∈N,∴PN,故P=N,所以选B。 点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。 变式:设集合,,则(B) A.M=NB.MNC.NMD. 解: 当时,2k+1是奇数,k+2是整数,选B 【例2】定义集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为 A)1B)2C)3D)4 分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。 解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。 变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为 A)5个B)6个C)7个D)8个 变式2:已知{a,b}A{a,b,c,d,e},求集合A. 解:由已知,集合中必须含有元素a,b. 集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}. 评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个. 【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。 解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3. ∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A ∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1, ∴∴ 变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值. 解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5 ∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴ 又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4 ∴b=-4,c=4,m=-5 【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1 分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。 解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。 综合以上各式有B={x|-1≤x≤5} 变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0) 点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。 变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。 解答:M={-1,3},∵M∩N=N,∴NM ①当时,ax-1=0无解,∴a=0② 综①②得:所求集合为{-1,0,} 【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。 分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。 解答:(1)若,在内有有解 令当时, 所以a>-4,所以a的取值范围是 变式:若关于x的方程有实根,求实数a的取值范围。 解答: 点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的'关键。 复习的重点一是要掌握所有的知识点,二就是要大量的做题,编辑为各位考生带来了高中数学知识点复习:集合与映射专题复习指导 一、集合与简易逻辑 复习导引:这部分高考题一般以选择题与填空题出现。多数题并不是以集合内容为载体,只是用了集合的表示方法和简单的交、并、补运算。这部分题其内容的载体涉及到函数、三角函数、不等式、排列组合等知识。复习这一部分特别请读者注意第1题,阐述了如何审题,第3、5题的思考方法。简易逻辑部分应把目光集中到充要条件上。 1.设集合M={1,2,3,4,5,6},S1、S2、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj},(ij,i、j{1,2,3,k})都有min{-,-}min{-,-}(min{x,y}表示两个数x、y中的较小者)。则k的最大值是 A.10B.11 C.12D.13 分析:审题是解题的源头,数学审题训练是对数学语言不断加深理解的过程。以本题为例min{-,-}{-,-}如何解决?我们不妨把抽象问题具体化! 如Si={1,2},Sj={2,3}那么min{-,2}为-,min{-,-}为-,Si是Sj符合题目要求的两个集合。若Sj={2,4}则与Si={2,4}按题目要求应是同一个集合。 题意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按题目要求是4个集合。M是6个元素构成的集合,含有2个元素组成的集合是C62=15个,去掉4个,满足条件的集合有11个,故选B。 注:把抽象问题具体化是理解数学语言,准确抓住题意的捷径。 2.设I为全集,S1、S2、S3是I的三个非空子集,且S1S3=I,则下面论断正确的是 (A)CIS1(S2S3)= (B)S1(CIS2CIS3) (C)CIS1CIS2CIS3= (D)S1(CIS2CIS3) 分析:这个问题涉及到集合的交、并、补运算。我们在复习集合部分时,应让同学掌握如下的定律: 摩根公式 CIACIB=CI(AB) CIACIB=CI(AB) 这样,选项C中: CIS1CIS2CIS3 =CI(S1S3) 由已知 S1S3=I 即CI(S1S3)=CI= 而上面的定律并不是复习中硬加上的,这个定律是教材练习一道习题的引申。所以,高考复习源于教材,高于教材。 这道题的解决,也可用特殊值法,如可设S1={1,2},S2={1,3},S3={1,4}问题也不难解决。 3.是正实数,设S={|f(x)=cos[(x+])是奇函数},若对每个实数a,S(a,a+1)的元素不超过2个,且有a使S(a,a+1)含2个元素,则的取值范围是。 解:由f(x)=cos[(x+)]是奇函数,可得cosxcos=0,cosx不恒为0, cos=0,=k+-,kZ 又0,=-(k+-) (a,a+1)的区间长度为1,在此区间内有且仅有两个角,两个角之差为:-(k1+k2) 不妨设k0,kZ: 两个相邻角之差为-。 若在区间(a,a+1)内仅有二角,那么-2,2。 注:这是集合与三角函数综合题。 对应于一组,正如在数学原始概念。我们知道,有个和数字线之间真正的对应关系,点的实数的平面坐标,并下令一名男子与他的名字,一个学生,他的学校,可以看作是对应关系。 对应的是两个集合A和B.A 之间的关系对于每一个元素,有以下三种情况: 比索(1)B有相应的唯一元素。 (2)B,有对应的一个以上的元素。 (3)B是没有相应的元件。 同样,对于B中的每一个元素而言,有以下三种情况: 在相应的独特元素。 比索(5),有相应的多个元素。 比索(6)没有相应的元素。 相当于在一般情况下,这些情况都可能发生。 【2】映射 映射是一种特殊的对应关系,学习这个定义时,应注意以下几点: 比索(1)映射为对应的集合从A,B和从A到BF由法律决定。 (2)中的映射,设置一个“任何元素”有“才”在集合B这不是集合A的元素在集合B中存在的没有,或者案件多于一个的对象(即,将不会在上述(2)(3)在这两种情况下)。 比索(3)在地图上,设置一个状态和B是不平等的。在一般情况下,我们并不要求B的两个元素之间的映射和A是对应于(间的(4)(5)(6)三种情况下都可能发生,即对应)的唯一元素。因此,从映射A到B并从B到A被映射有不同的要求。A的收集,B可以是相同的集合。 仿佛原始图像是一个映射f,从A到B,那么A和B在图像B中的对应元素的元素称为,原来的名字图像b的关系可以表示为B=F(A),与原图像的概念和类似物,该映射可以被理解为“A中的每个元素有B中一个独特的图像”对应于这样一个特殊的。由于映射在一般情况下,B,作为元件不一定如此,因为该组(即由所有的图像形成的集合)是B的子集,记为{F(A)|a∈A}IB。 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={2-1=0}B={-1,1}“元素相同” 结论:对于两个集合A与B,如果集合A的`任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。AíA ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) ③如果AíB,BíC,那么AíC ④如果AíB同时BíA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集 直线的倾斜角: 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<> 直线的斜率: ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即斜率反映直线与轴的倾斜程度。 ②过两点的直线的斜率公式。 注意: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 直线方程: 1.点斜式:y-y0=k(x-x0) (x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。 2.斜截式:y=kx+b 直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。 3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1) 如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。 如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。 如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。 4.截距式x/a+y/b=1 对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。 5.一般式;Ax+By+C=0 将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。 (一)导数第一定义 设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义 (二)导数第二定义 设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义 (三)导函数与导数 如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数研究多项式函数单调性的一般步骤 (1)求f(x) (2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0的解集与定义域的交集的对应区间为增区间; f(x)”、小于号“,≥,≤,≠)连接的式子叫做不等式。 通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 数学知识点1、不等式性质比较大小方法: (1)作差比较法(2)作商比较法 不等式的基本性质 ①对称性:a > b,b > a ②传递性:a > b,b > ca > c ③可加性:a > b a + c > b + c ④可积性:a > b,c > 0,ac > bc ⑤加法法则:a > b,c > d,a + c > b + d ⑥乘法法则:a > b > 0,c > d > 0,ac > bd ⑦乘方法则:a > b > 0,an > bn(n∈N) ⑧开方法则:a > b > 0 数学知识点2、算术平均数与几何平均数定理: (1)如果a、b∈R,那么a2 + b2 ≥2ab;(当且仅当a=b时等号) (2)如果a、b∈R+,那么(当且仅当a=b时等号)推广: 如果为实数,则重要结论 (1)如果积xy是定值P,那么当x=y时,和x+y有最小值2; (2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。 数学知识点3、证明不等式的常用方法: 比较法:比较法是最基本、最重要的方法。 当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。 综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。 分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。 一、直线与方程高考考试内容及考试要求: 考试内容: 1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式; 2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离; 考试要求: 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程; 2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系; 二、直线与方程 课标要求: 1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素; 2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式; 3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系; 4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。 要点精讲: 1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°. 倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα (1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0; (2)当直线l与x轴垂直时,α= 90°,k 不存在。 由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。 3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式: (若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。 4.两条直线的平行与垂直的判定 (1)若l1,l2均存在斜率且不重合: ①;② 注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。 (2) 若A1、A2、B1、B2都不为零。 注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。 两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。 5.直线方程的五种形式 确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。 6.直线的交点坐标与距离公式 (1)两直线的交点坐标 一般地,将两条直线的方程联立,得方程组 若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。 (2)两点间距离 两点P1(x1,y1),P2(x2,y2)间的距离公式 特别地:轴,则、轴,则 (3)点到直线的距离公式 点到直线的距离为: (4)两平行线间的距离公式: 若,则: 注意点:x,y对应项系数应相等。 一、求导数的方法 (1)基本求导公式 (2)导数的四则运算 (3)复合函数的导数 设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即 二、关于极限 1、数列的极限: 粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如: 2、函数的极限: 当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作 三、导数的概念 1、在处的导数。 2、在的导数。 3。函数在点处的导数的几何意义: 函数在点处的导数是曲线在处的切线的斜率, 即k=,相应的切线方程是 注:函数的导函数在时的函数值,就是在处的导数。 例、若=2,则=A—1B—2C1D 四、导数的综合运用 (一)曲线的切线 函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步: (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k= (2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。 (一)导数第一定义 设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义 (二)导数第二定义 设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义 (三)导函数与导数 如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数研究多项式函数单调性的一般步骤 (1)求f(x) (2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f(x) (2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间 学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。 一、高中数列基本公式: 1、一般数列的通项an与前n项和Sn的关系:an= 2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 3、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 4、等比数列的通项公式: an= a1qn-1an= akqn-k (其中a1为首项、ak为已知的第k项,an≠0) 5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 二、高中数学中有关等差、等比数列的结论 1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。 2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若m+n=p+q,则 4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。 5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。 7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1)元素的确定性; 2)元素的互异性; 3)元素的无序性。 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1)用拉丁字母表示集合:A={我校的篮球队员}B={12345}。 2)集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A。 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2} 4、集合的分类: 1)有限集含有有限个元素的集合。 2)无限集含有无限个元素的集合。 3)空集不含任何元素的集合例:{x|x2=—5}。 二、集合间的基本关系 1、“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA。 2、“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2—1=0}B={—11}“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。 ①任何一个集合是它本身的子集。AA ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果ABBC那么AC ④如果AB同时BA那么A=B 3、不含任何元素的集合叫做空集,记为Φ。 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集。 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。 3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA={x?x?S且x?A}。 (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。 中数学组在20xx年的工作在学校工作思路的指导下,认真贯彻落实课改精神,以人为本,以促进学生发展、教师成长为目的。以教法探索为重点,努力提高课堂效益和教学质量;以组风建设为主线积极探索教研组建设和教师专业发展的有效途径。不断总结经验,发挥优势,改进不足,集全组教师的创造力,努力使雅安中学高中数学教研组在有朝气、有创新精神、团结奋进的基础上焕发出新的生机与活力。 在工作中,我们充分发挥一个“核心”的表率作用,狠抓“两条线”的深入研究,积极促进“三个团队”主动参与和建设,从而使我组的研究工作和谐、高效地开展。 一个核心:是指我组内具有良好思想素质、过硬的业务能力、踏实的工作作风和不断进取精神的教学骨干们。充分发挥核心成员的聪明才智,在做好本职工作的前提下,依据他们的特长,或上示范课,或开讲座,或主持集体备课,带头参与教学理论和具体教学实际的研究,使核心成员们的各类资源做到组内共享。 二条线:是指对教育教学的理论学习研究和具体课堂教学的研究两个方面。要不断提高教学质量,关键在于要有一批思想新、能力强,具有较高理论修养的教学队伍,因此,要打造一批科研型的教师,从而实现科研兴校,个性强校,特色活校的策略。为此,教研组经常组织全组教师认真学习新的教育教学理论和先进的教学方法,不断丰富教师们的理论水平。具备了较先进的教育理论并且具备了较新的教学观念,则需要运用于具体的教学实践之中,并在实践中找出符合自己实际的教学法,如何找准切入点,切实有助于教学质量的提高,这也是我们教研工作重点关注的目标之一,教研就应在具体的教学中研究,边教边研,在研中促进教学水平的提高。为此,近几年来围绕着一个国家级课题和二个省级课展开了行之有效的研究工作,除进行必要的理论学习和研究外,经常进行公开教学研究课,教学探讨课,并常请教育专家莅临指导工作,从而使我组的教学研究工作落在实处。 三个团队:是指年级备课组、科研课题组和师徒组合群。在教研组的统一计划下,各年级备课组均有自己的教学计划,有健全的集体备课制度,每次活动均做到“四定”,即:定时间、定地点、定内容、定主讲人(上课人),在平时的教学活动中,督促教师做到“教学六认真”。科研课题组则以三个课题为龙头,开展较为深入的教学研究,其中一课题已结题,另外两个课题已取得阶段性成果。为使青年教师尽快成才,充分发挥“核心”的作用,我组每一个青年教师均拜德艺皆高老教师为师,这样师徒之间的研究活动经常进行,老教师的经验为年青人所借鉴使用,反过来,青年教师的闯劲又促使老教师青春焕发,新老相得益彰。我组教师在完成本职工作之余,不计份内份外,积极参与各级各类教研活动,将自己的研究成果无私地贡献给同行。 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x)2的解集是{x?R|x-3>2}或{x|x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-11}“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ①任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?BB?C那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A A∪φ=AA∪B=B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA={x?x?S且x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U (1)不等关系 感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。 (2)一元二次不等式 ①经历从实际情境中抽象出一元二次不等式模型的过程。 ②通过函数图象了解一元二次不等式与相应函数、方程的联系。 ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简单线性规划问题 ①从实际情境中抽象出二元一次不等式组。 ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。 ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。 (4)基本不等式 ①探索并了解基本不等式的证明过程。 ②会用基本不等式解决简单的(小)值问题。 ★高中数学导数知识点 一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。 二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。 三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。 四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。 ★高中数学导数要点 1、求函数的单调性: 利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。 利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。 反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导, (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间); (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间); (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。 2、求函数的极值: 设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。 可导函数的极值,可通过研究函数的单调性求得,基本步骤是: (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的 变化情况: (4)检查f(x)的符号并由表格判断极值。 3、求函数的最大值与最小值: 如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。 求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值; (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。 4、解决不等式的有关问题: (1)不等式恒成立问题(绝对不等式问题)可考虑值域。 f(x)(xA)的值域是[a,b]时, 不等式f(x)0恒成立的充要条件是f(x)max0,即b0; 不等式f(x)0恒成立的充要条件是f(x)min0,即a0。 f(x)(xA)的值域是(a,b)时, 不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。 (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。 5、导数在实际生活中的应用: 实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。 1.等比中项 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。 有关系: 注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。 2.等比数列通项公式 an=a1_q’(n-1)(其中首项是a1,公比是q) an=Sn-S(n-1)(n≥2) 前n项和 当q≠1时,等比数列的前n项和的公式为 Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1) 当q=1时,等比数列的前n项和的公式为 Sn=na1 3.等比数列前n项和与通项的关系 an=a1=s1(n=1) an=sn-s(n-1)(n≥2) 4.等比数列性质 (1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq; (2)在等比数列中,依次每k项之和仍成等比数列。 (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 (5)等比数列前n项之和Sn=a1(1-q’n)/(1-q) (6)任意两项am,an的关系为an=am·q’(n-m) (7)在等比数列中,首项a1与公比q都不为零。 注意:上述公式中a’n表示a的n次方。 等比数列求和公式 q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) q=1时,Sn=na1 (a1为首项,an为第n项,d为公差,q为等比) 这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。 等比数列求和公式推导 Sn=a1+a2+a3+...+an(公比为q) qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1) Sn-qSn=(1-q)Sn=a1-a(n+1) a(n+1)=a1qn Sn=a1(1-qn)/(1-q)(q≠1)高中数学集合知识总结 篇3
高中数学集合知识总结 篇4
高中数学集合知识总结 篇5
高中数学集合知识总结 篇6
高中数学集合知识总结 篇7
高中数学集合知识总结 篇8
高中数学集合知识总结 篇9
高中数学集合知识总结 篇10
高中数学集合知识总结 篇11
高中数学集合知识总结 篇12
高中数学集合知识总结 篇13
高中数学集合知识总结 篇14
高中数学集合知识总结 篇15
高中数学集合知识总结 篇16
高中数学集合知识总结 篇17
高中数学集合知识总结 篇18