热门标签最近更新文档搜索存到桌面欢迎您访问好范文,请记住我们的网址 www.hfanwen.com

当前位置:首页 > 实用文档 > 内容页

有关八年级数学教案3篇 八年级数学优秀教案

分类:实用文档发表于 2023-06-04 14:27阅读数:0

在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《有关八年级数学教案3篇 八年级数学优秀教案》,希望对你的范文写作有所帮助。

下面是好范文小编整理的有关八年级数学教案3篇 八年级数学优秀教案,供大家参考。

有关八年级数学教案1

  教学内容和地位:

众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

  教学重点和难点:

本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

  教学目标分析:

认知目标:

(1)使学生认知众数、中位数的意义;

(2)会求一组数据的众数、中位数。

能力目标:

(1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

(2)在问题解决的过程中,培养学生的自主学习能力;

(3)在问题分析的过程中,培养学生的团结协作精神。

情感目标:

(1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;

(2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

  教法与学法:

根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

有关八年级数学教案2

  教学建议

知识结构

  重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的.难度.

  教法建议

1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

  教学设计示例

  一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

  二、教学设计

画图测量,猜想讨论,启发引导.

  三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

  四、课时安排

1课时

  五、教具学具准备

投影仪、胶片、常用画图工具

  六、教学步骤

【复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

【引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长DE到F,使 ,连结CF,由 可得AD FC.

(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

(证明过程略)

例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

证明:连结AC.

∴ (三角形中位线定理).

同理,

∴GH EF

∴四边形EFGH是平行四边形.

【小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

  七、布置作业

教材P188中1(2)、4、7

有关八年级数学教案3

  一、学习目标:

1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

2、会运用两数差的平方公式进行计算。

  二、学习过程:

请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

(一)探索

1、计算: (a - b) =

方法一: 方法二:

方法三:

2、两数差的平方用式子表示为_________________________;

用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?

(二)现学现用

利用两数差的平方公式计算:

1、(3 - a) 2、 (2a -1) 3、(3y-x)

4、(2x – 4y) 5、( 3a - )

(三)合作攻关

灵活运用两数差的平方公式计算:

1、(999) 2、( a – b – c )

3、(a + 1) -(a-1)

(四)达标训练

1、、选择:下列各式中,与(a - 2b) 一定相等的是( )

A、a -2ab + 4b B、a -4b

C、a +4b D、 a - 4ab +4b

2、填空:

(1)9x + + 16y = (4y - 3x )

(2) ( ) = m - 8m + 16

2、计算:

( a - b) ( x -2y )

3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

(四)提升

1、本节课你学到了什么?

2、已知a – b = 1,a + b = 25,求ab 的值

标签: 教案