热门标签最近更新文档搜索存到桌面欢迎您访问好范文,请记住我们的网址 www.hfanwen.com

当前位置:首页 > 实用文档 > 内容页

高一数学教案(精品15篇)

分类:实用文档发表于 2023-07-29 17:43阅读数:0

在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《高一数学教案(精品15篇)》,希望对你的范文写作有所帮助。

【前言】本文是网友“nuosu”收集的高一数学教案(精品15篇),供大家参阅。

高一数学教案 篇1

一、教学目标

1.知识与技能

(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;

(2)体会程序化解决问题的思想,为算法的学习作准备。

2.过程与方法

(1)让学生在求解方程近似解的实例中感知二分发思想;

(2)让学生归纳整理本节所学的知识。

3.情感、态度与价值观

①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;

②培养学生认真、耐心、严谨的数学品质。

二、 教学重点、难点

重点:用二分法求解函数f(x)的零点近似值的步骤。

难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?

三、 学法与教学用具

1.想-想。

2.教学用具:计算器。

四、教学设想

(一)、创设情景,揭示课题

提出问题:

(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?

(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?

(二)、研讨新知

一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

取区间(2,3)的中点,用计算器算得f()≈-,因为f()xf(3)<0,所以零点在区间(,3)内;

再取区间(,3)的中点,用计算器算得f()≈,因为f()xf()<0,所以零点在(,)内;

由于(2,3),(,3),(,)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为时,由于∣-3125∣=<,所以我们可以将x=4作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。

这种求零点近似值的方法叫做二分法。

1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.

生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。

2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?

先由学生思考几分钟,然后作如下说明:

设函数零点为x0,则a<x0<b,则:

0<x0-a<b-a,a-b<x0-b<0;

由于︱a - b ︳<,所以

︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

即a或b 作为零点x0的近似值都达到了给定的精确度。

(三)、巩固深化,发展思维

1.学生在老师引导启发下完成下面的例题

例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到)

问题:原方程的近似解和哪个函数的零点是等价的?

师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。

生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.

(四)、归纳整理,整体认识

在师生的互动中,让学生了解或体会下列问题:

(1)本节我们学过哪些知识内容?

(2)你认为学习“二分法”有什么意义?

(3)在本节课的学习过程中,还有哪些不明白的地方?

(五)、布置作业

P92习题组第四题,第五题。

高一数学教案 篇2

第一节 集合的含义与表示

学时:1学时

[学习引导]

一、自主学习

1.阅读课本 .

2.回答问题:

⑴本节内容有哪些概念和知识点?

⑵尝试说出相关概念的含义?

3完成 练习

4小结

二、方法指导

1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系

3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法

[思考引导]

一、提问题

1.集合中的元素有什么特点?

2、集合的常用表示法有哪些?

3、集合如何分类?

4.元素与集合具有什么关系?如何用数学语言表述?

5集合 和 是否相同?

二、变题目

1.下列各组对象不能构成集合的是( )

A.北京大学2008级新生

个英文字母

C.著名的艺术家

年北京奥运会中所设定的比赛项目

2.下列语句:①0与 表示同一个集合;

②由1,2,3组成的集合可表示为 或 ;

③方程 的解集可表示为 ;

④集合 可以用列举法表示。

其中正确的是( )

A.①和④ B.②和③

C.② D.以上语句都不对

[总结引导]

1.集合中元素的三特性:

2.集合、元素、及其相互关系的数学符号语言的表示和理解:

3.空集的含义:

[拓展引导]

1.课外作业: 习题11第 题;

2.若集合 ,求实数 的值;

3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 .

撰稿:程晓杰 宋庆

高一数学教案 篇3

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

高一必修二数学教案41、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。

高一数学教案 篇4

学习目标

1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。

2. 结合已学过的数学实例,了解类比推理的含义;

3. 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。

学习过程

一、课前准备

问题3:因为三角形的内角和是 ,四边形的内角和是 ,五边形的内角和是

……所以n边形的内角和是

新知1:从以上事例可一发现:

叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。

新知2:类比推理就是根据两类不同事物之间具有

推测其中一类事物具有与另一类事物 的性质的推理。

简言之,类比推理是由 的推理。

新知3归纳推理就是根据一些事物的 ,推出该类事物的

的推理。 归纳是 的过程

例子:哥德巴赫猜想:

观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,

16=13+3, 18=11+7, 20=13+7, ……,

50=13+37, ……, 100=3+97,

猜想:

归纳推理的一般步骤

1 通过观察个别情况发现某些相同的性质。

2 从已知的相同性质中推出一个明确表达的一般性命题(猜想)。

※ 典型例题

例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。

变式1 观察下列等式:1+3=4= ,

1+3+5=9= ,

1+3+5+7=16= ,

1+3+5+7+9=25= ,

……

你能猜想到一个怎样的结论?

变式2观察下列等式:1=1

1+8=9,

1+8+27=36,

1+8+27+64=100,

……

你能猜想到一个怎样的结论?

例2设 计算 的值,同时作出归纳推理,并用n=40验证猜想是否正确。

变式:(1)已知数列 的第一项 ,且 ,试归纳出这个数列的通项公式

例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质。

圆的概念和性质 球的类似概念和性质

圆的周长

圆的面积

圆心与弦(非直径)中点的连线垂直于弦

与圆心距离相等的弦长相等,

※ 动手试试

1. 观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?

2 如果一条直线和两条平行线中的一条相交,则必和另一条相交。

3 如果两条直线同时垂直于第三条直线,则这两条直线互相平行。

三、总结提升

※ 学习小结

1.归纳推理的定义。

2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).

3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法

高一数学教案 篇5

一、教材的地位和作用

本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。

二、教学目标

(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

三、设计思路

本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点

(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

四、学生现实分析

本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异。

五、教学方法

(1)教学方法及教学手段

针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。

在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手、同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。

(2)学法指导

力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。

高一数学教案 篇6

教学目标:

1、应用圆周长、弧长公式综合圆的有关知识解答问题;

2、培养学生综合运用知识的能力和数学模型的能力;

3、通过应用题的教学,向学生渗透理论联系实际的观点。

教学重点:灵活运用弧长公式解有关的应用题。

教学难点:建立数学模型。

教学活动

(一)灵活运用弧长公式

例1、填空:

(1)半径为3cm,120°的圆心角所对的弧长是cm;

(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为;

(3)已知半径为3,则弧长为π的弧所对的圆心角为.

(学生独立完成,在弧长公式中l、n、R知二求一。)

答案:(1)2π;(2)24;(3)60°.

说明:使学生灵活运用公式,为综合题目作准备。

练习:P196练习第1题

(二)综合应用题

例2、如图,两个皮带轮的中心的距离为,直径分别为和(1)求皮带长(保留三个有效数字);(2)如果小轮每分转750转,求大轮每分约转多少转。

教师引导学生建立数学模型:

分析:(1)皮带长包括哪几部分(+DC++AB);

(2)“两个皮带轮的中心的距离为”,给我们解决此题提供了什么数学信息?

(3)AB、CD与⊙O1、⊙O2具有什么位置关系?AB与CD具有什么数量关系?根据是什么?(AB与CD是⊙O1与⊙O2的公切线,AB=CD,根据的是两圆外公切线长相等。)

(4)如何求每一部分的长?

这里给学生考虑的时间和空间,充分发挥学生的主体作用。

解:(1)作过切点的半径O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足为E.

∵O1O2=,

∴,

∴ (m)

∵,∴,

∴的长l1 (m).

∵,∴的长(m).

∴皮带长l=l1+l2+2AB=(m).

(2)设大轮每分钟转数为n,则

,(转)

答:皮带长约,大轮每分钟约转277转。

说明:通过本题渗透数学建模思想,弧长公式的应用,求两圆公切线的方法和计算能力。

巩固练习:P196练习2、3题。

探究活动

钢管捆扎问题

已知由若干根钢管的外直径均为d,想用一根金属带紧密地捆在一起,求金属带的长度。

请根据下列特殊情况,找出规律,并加以证明。

提示:设钢管的根数为n,金属带的长度为Ln如图:

当n=2时,L2=(π+2)d.

当n=3时,L3=(π+3)d.

当n=4时,L4=(π+4)d.

当n=5时,L5=(π+5)d.

当n=6时,L6=(π+6)d.

当n=7时,L7=(π+6)d.

当n=8时,L8=(π+7)d.

猜测:若最外层有n根钢管,两两相邻接排列成一个向外凸的圈,相邻两圆是切,则金属带的长度为L=(π+n)d.

证明略。

高一数学教案 篇7

1、知识与技能

(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

(2)理解任意角的三角函数不同的定义方法;

(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

(4)掌握并能初步运用公式一;

(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。

2、过程与方法

初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号。最后主要是借助有向线段进一步认识三角函数。讲解例题,总结方法,巩固练习。

3、情态与价值

任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点。过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解。

本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系。

教学重难点

重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。

高一数学教案 篇8

  教学目标:

1、初步掌握圆周长、弧长公式;

2、通过弧长公式的推导,培养学生探究新问题的能力;

3、调动学生的积极性,培养学生的钻研精神;

4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力.

  教学重点:弧长公式.

  教学难点:正确理解弧长公式.

  教学活动

(一)复习(圆周长)

已知⊙O半径为R,⊙O的周长C是多少?

C=2πR

这里π=…,这个无限不循环的小数叫做圆周率.

由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?

提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.

(二)探究新问题、归纳结论

教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).

研究步骤:

(1)圆周长C=2πR;

(2)1°圆心角所对弧长=;

(3)n°圆心角所对的`弧长是1°圆心角所对的弧长的n倍;

(4)n°圆心角所对弧长=.

归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则

(弧长公式)

(三)理解公式、区分概念

教师引导学生理解:

(1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

(2)公式可以理解记忆(即按照上面推导过程记忆);

(3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.

(四)初步应用

例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm).

分析:(1)圆环的宽度与同心圆半径有什么关系?

(2)已知周长怎样求半径?

(学生独立完成)

解:设外圆的半径为R1,内圆的半径为R2,则

d= .

∵,

∴ (cm)

例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)

教师引导学生把实际问题抽象成数学问题,渗透数学建模思想.

解:由弧长公式,得

(mm)

所要求的展直长度

L (mm)

答:管道的展直长度为2970mm.

课堂练习:P176练习1、4题.

(五)总结

知识:圆周长、弧长公式;圆周率概念;

能力:探究问题的方法和能力,弧长公式的记忆方法;初步应用弧长公式解决问题.

(六)作业教材P176练习2、3;P186习题3.

高一数学教案 篇9

  一、教学目标

1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标

1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

  四、教学重难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

  五、教学过程

1、新课导入

有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,

请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加厘米。

(1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

(2)你能写出x与y之间的关系式吗?

分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加厘米,总长度为厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长厘米,所挂物体为x千克,弹簧就伸长x厘米,则弹簧总长为原长加伸长的长度,即y=3+x。

2、做一做

某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000。18x或y=100 x)

接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

3、一次函数,正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4、例题讲解

例1:下列函数中,y是x的一次函数的是( )

①y=x6;②y= ;③y= ;④y=7x

A、①②③ B、①③④ C、①②③④ D、②③④

分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

高一数学教案 篇10

一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解逻辑联结词“或”“且”“非”的含义;

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平. ……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的.)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

例1 判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0

中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

命题可分为简单命题和复合命题.

不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用p ,q ,r ,s ,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1)5 ;

(2)非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若ab=0 ,则a=0 .

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

高一数学教案 篇11

教学目标:

使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

教学重点:

函数的概念,函数定义域的求法.

教学难点:

函数概念的理解.

教学过程:

Ⅰ.课题导入

[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

问题一:y=1(xR)是函数吗?

问题二:y=x与y=x2x 是同一个函数吗?

(学生思考,很难回答)

[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

Ⅱ.讲授新课

[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.

在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.

在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.

在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.

请同学们观察3个对应,它们分别是怎样形式的对应呢?

[生]一对一、二对一、一对一.

[师]这3个对应的共同特点是什么呢?

[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.

[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

现在我们把函数的概念进一步叙述如下:(板书)

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.

记作:y=f(x),xA

其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.

一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.

反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.

二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.

函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.

Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

[师]理解函数的定义,我们应该注意些什么呢?

(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

注意:①函数是非空数集到非空数集上的一种对应.

②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

③集合A中数的任意性,集合B中数的惟一性.

④f表示对应关系,在不同的函数中,f的具体含义不一样.

⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

Ⅲ.例题分析

[例1]求下列函数的定义域.

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

解:(1)x-20,即x2时,1x-2 有意义

这个函数的定义域是{x|x2}

(2)3x+20,即x-23 时3x+2 有意义

函数y=3x+2 的定义域是[-23 ,+)

(3) x+10 x2

这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

注意:函数的定义域可用三种方法表示:不等式、集合、区间.

从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

(1)如果f(x)是整式,那么函数的定义域是实数集R;

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

下面我们来看求函数式的值应该怎样进行呢?

[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

[师]生乙的回答完整吗?

[生]完整!(课本上就是如生乙所述那样写的).

[师]大家说,判定两个函数是否相同的依据是什么?

[生]函数的定义.

[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

(无人回答)

[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

(生恍然大悟,我们怎么就没想到呢?)

[例2]求下列函数的值域

(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

(3)y=x2+4x+3 (-31)

分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

解:(1)yR

(2)y{1,0,-1}

(3)画出y=x2+4x+3(-31)的图象,如图所示,

当x[-3,1]时,得y[-1,8]

Ⅳ.课堂练习

课本P24练习17.

Ⅴ.课时小结

本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

Ⅵ.课后作业

课本P28,习题1、2. 文 章来

高一数学教案 篇12

学习目标

1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

2、掌握标准方程中的几何意义

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

一、预习检查

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

二、问题探究

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,离心率为、

例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、

例3(理)求离心率为,且过点的双曲线标准方程、

三、思维训练

1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、

2、椭圆的`离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、

四、知识巩固

1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、

2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、

3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、

高一数学教案 篇13

【考点阐述】

两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

【考试 要求】

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二 倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的`化简、求值和恒等式证明.

【考题分类】

(一)选择题(共5题)

1.(海南宁夏卷理7) =( )

A. B. C. 2 D.

解: ,选C。

2.(山东卷 理5文10)已知cos(α- )+sinα=

(A)- (B) (C)- (D)

解: , ,

3.(四川卷理3文4) ( )

(A) (B) (C) (D)

【解】:∵

故选D;

【点评】:此题重点考察各三角函数的关系;

4.(浙江卷理8)若 则 =( )

(A) (B)2 (C) (D)

解析:本小题主要考查三角 函数的求值问题。由 可知, 两边同时除以 得 平方得 ,解得 或用观察法.

5.(四川延考理5)已知 ,则 ( )

(A) (B) (C) (D)

解: ,选C

(二)填空题(共2题)

1.(浙江卷文12)若 ,则 。

解析:本 小题主要考查诱导公式及二倍角公式的应用。由 可知, ;而 。答案 :

2.(上海春卷6)化简: .

(三)解答题(共1题)

1.(上海春卷17)已知 ,求 的 值.

[解] 原式 …… 2分

. …… 5分

又 , , …… 9分

. …… 12分 文章

高一数学教案 篇14

1、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、

8、教学设计(过程)

一、引入

问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?

问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?

问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?

二、原有认知结构的改造和重构

问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?

学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数

学生阅读教材,并思考:

问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?

学生讨论并回答

三、新概念的形成

问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?

学生回答,并阅读教材,得到任意角三角函数的定义、并思考:

问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?

展示任意角三角函数的定义,并指出它是如何刻划圆周运动的

并类比函数的研究方法,得出任意角三角函数的定义域和值域。

四、概念的运用

1、基础练习

①口算clipXimage008的值、

②分别求clipXimage010的值

小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值

ⅱ)诱导公式(一)

③若clipXimage012,试写出角clipXimage002[2]的值。

④若clipXimage015,不求值,试判断clipXimage017的符号

⑤若clipXimage019,则clipXimage021为第象限的角、

例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值

若P点的坐标变为clipXimage028,求clipXimage030的值

小结:任意角三角函数的等价定义(终边定义法)

例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?

小结:可以采用三角函数模型来刻画圆周运动

五、拓展探究

问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?

思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?

六、课堂小结

问题9:请你谈谈本节课的收获有哪些?

七、课后作业

教材P21第6、7、8题

高一数学教案 篇15

教学目标:

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件、

教学重难点:

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具:

投影仪

教学过程:

一、复习引入:

1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

P107习题2、4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

标签: 教案