热门标签最近更新文档搜索存到桌面欢迎您访问好范文,请记住我们的网址 www.hfanwen.com

当前位置:首页 > 实用文档 > 内容页

《简易方程》教学设计6篇 简易方程的教学设计带设计意图

分类:实用文档发表于 2023-10-03 15:05阅读数:0

在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《《简易方程》教学设计6篇 简易方程的教学设计带设计意图》,希望对你的范文写作有所帮助。

下面是好范文小编整理的《简易方程》教学设计6篇 简易方程的教学设计带设计意图,供大家参考。

《简易方程》教学设计1

  【教学内容】

教材第78页例4,“做一做”和练习十七5~10题。

  【教学目标】

1.学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

2.学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

3.培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。

4.让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣。

  【重点难点】

正确设未知数,找出等量关系列方程解决问题。

  【教学准备】

教具:地球仪多媒体课件

  【复习导入】

1.填空。

(1)学校科技组的`男同学人数是女同学的3倍。设女同学有x人,则男同学有()人;设男同学有x人,则女同学有()人。

(2)学校书法组有女同学x人,男同学人数是女同学的2.5倍。男同学有()人,一共有()人,男同学比女同学多()人。

2.看图列方程,并求出方程的解。

3.导入新课:这节课我们继续学习列稍复杂的方程解决实际问题。(出示课题)

  【新课讲授】

1.情景导入。

课件出示:转动着的地球。

师:同学们,这就是我们人类赖以生存的地球,地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的面积。因此,也有人把地球称为“水球”,所以,地球看上去是漂亮的深蓝色。那么你们想知道地球上的陆地面积、海洋面积究竟有多大吗?好,下面老师给你们提供一些信息。

2.出示例4。

地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。海洋面积和陆地面积分别是多少亿平方千米?

3.分析,理解题意,找等量关系,列方程。

师:请同学们先思考下面的问题:

(1)题中有几个未知量?

(2)设谁为x比较合适?为什么?

(3)问题中包含有怎样的等量关系?

(4)怎样列方程?

汇报交流,总结:

(1)题中有两个未知量,陆地面积和海洋面积。海洋面积约为陆地面积的2.4倍。

(2)根据“海洋面积约为陆地面积的2.4倍”设未知数,陆地面积是x,海洋面积是2.4x。

出示:(线段图)

(3)根据“地球的表面积为5.1亿平方千米”,得到等量关系是海洋面积+陆地面积=地球表面积。

(4)列方程是:x+2.4x=5.1

讲解:用方程解,一般设“一倍量”为x,那么“几倍量”就可以用几x表示, 根据题中另一个条件找数量间的相等关系,然后列方程。

课件出示:(配合教师小结出示)

解:设陆地面积为x亿平方千米。

那么海洋面积可以表示为2.4x亿平方千米。

海洋面积+陆地面积=地球表面积

x+2.4x=5.1

4.解方程。

师:会解这个方程吗?试一试吧。

汇报,交流。

(1+2.4)x=5.1(追问:根据是什么?)

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

讨论:1.5表示什么意思?海洋面积怎样求?

学生自由发言。

小结:求海洋面积有两种方法。

方法一:5.1-1.5=3.6(亿平方千米)

方法二:2.4x=2.4×1.5=3.6(亿平方千米)

5.检验。

师:我们做得对吗?如何检验呢?

学生讨论,汇报。

小结:检验有两种方法。

第一种是用代入方程检验的方法:

1.5+2.4×1.5=5.1

第二种:用检查答案是否符合已知条件的方法来检验。

1.5+3.6=5.1

6.即时巩固。

解方程:x+1.5x=5x-0.5x=30

  【课堂作业】

完成课本第81页练习十七的第5~8题。

  【课堂小结】

提问:这节课你学习了什么?题目中有两个未知数,怎样列方程解答?

小结:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个。

第二,两个已知数条件怎么用?可以把其中一个用来写含有字母的式子,表示另一个未知数,另一个用来列方程。

第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。

  【课后作业】

完成教材第81页练习十七第9~10题。

《简易方程》教学设计2

  教材分析:

“用字母表示数”是义务教育教科书人教版五年级上册第五单元《简易方程》中的第一部分内容。这部分内容是在学生已经学习了整数的加、减、乘、除四则运算以及常见的数量关系和几何计算公式的基础上进行的的。它是今后进一步学习简易方程、周长、面积、体积等字母公式的基础。它是学生学习数的概念方面的一次重大发展,是学生有算术到代数的重要转折点,也是学生进一步学习代数知识的'基础。

  学情分析:

1.学生已经接触过一些用字母表示的计算公式和预案算律,对简单的实际问题中的基本数量关系也比较熟悉,学生用字母表示数的必要性和作用已有了一定的感性认识,有一定的观察、分析、概括能力,这些都有助于学生的学习。

2.学生已有生活经验和学习该内容的经验:学生对日常生活中使用字母表示电视台标、地名、组织等给人们带来许多方便的现象有一定的了解。

3.学生学习该内容的困难:学生是第一次接触用字母表示数的方法,从熟悉的算式引出含有字母的式子,从具体的数到用字母表示数是认识上的一次飞跃,对学生来说是相当困难的,也非常不适应。因此,教学中应充分利用现实情境,让学生再体会数量关系的基础上,理解用字母表示数的意义,体会用字母表示数的优越性。

  教学目标:

1.在现实情境中,学习和理解字母表示数的意义,能结合具体情境,利用字母表示数进行表达与交流,体会用字母表示数的简洁性。

2.在探索数量关系的过程中,进一步发展学生数感、符号感。

3.通过数学活动来激起学生的学习热情,培养学习兴趣。

  教学设计特点:

1、在现实情境中体验和理解用字母表示数的意义。

利用向袋子里放笔的情境,让学生感受用字母表示数的必要性。

2、在对比交流中,深化理解概念。

利用前后袋子笔的数量关系,理解用字母表示数的意义。

  教学过程

一、导入新课,提出问题

直接出示课题。提问:你在哪些地方见过用字母表示的?

学生举例,教师小结:在数学中也经常用字母表示数,看屏幕上“用字母表示数”,你能提出与这节课有关的问题吗?

二、互动探究

1.用字母表示数

咱们班一共有()人,老师带来了()笔。

情境一:现在老师在袋子里中放笔,向一号袋子里放1支,用数字1表示。放2支,用数字2表示,现在请一名学生偷偷的放笔后,老师放笔,你知道是几支笔吗?

预设:学生用数字猜测

提问:你们能确定这些答案是正确的吗?

预设:学生用字母表示

追问:你是怎么想的?

讨论分析:我们不确定里面有几支笔,但对于a你知道些什么(引出范围)

2.用字母表示数量关系

情境二:向袋子里加2支笔

提问:现在你能确定里面有几支笔吗?那你怎么表示呢?

预设:a

反馈:用a表示合适吗?

另一个字母b

反馈:与原来袋子不同了,不能用a表示(不同的未知数用不同的字母表示)

a+1

比较分析:b和a+1哪个更好

反馈:a+1既能表示2号袋子里的笔,又能表示比1号袋子多了一支笔

练习:天凝小学503班男生人数为a人,女生人数为a+6人,你能得到哪些数学信息呢?

爸爸比小红的年龄大30岁,用你自己喜欢的方式表示爸爸和小红的年龄。

假设小红的年龄是10岁,你知道爸爸的年龄吗?

3.用字母表示计算公式

每支笔为2元,你知道老师买这笔需要多少钱吗?全校所有需要的笔呢?(2n)

刚才我们用2n表示全校所有笔的价钱,4m你认为可以解决什么问题呢?

《简易方程》教学设计3

  【教学内容】

教材第68页例2、“做一做”和练习十五的第3、4题。

  【教学目标】

1.运用等式的性质正确地解方程,并养成检验的好习惯。

2.掌握解方程的`正确格式和写法。

3.进一步提高学生的分析、迁移能力。

  【重点难点】

1.正确、熟练地解方程。

2.解方程的方法。

  【教学准备】

多媒体课件。

  【复习导入】

1.解方程。

x+5.7=10 3.5+x=15

2.问题:等式的性质是什么?什么是方程的解,什么是解方程?

学生回忆后交流汇报。

3.导入新课:我们上节课学习了解方程,这节课继续运用等式的性质解方程,并板书课题。

  【新课讲授】

1.教学例2。

(1)出示例2:解方程3x=18。

师:怎样变换,才能使方程保持平衡,又能得出x等于多少?

学生独立思考,同桌相互交流。

引导学生明确:方程两边同时除以3,左右两边完全相等。

学生独立解答写出过程,并检验。

全班交流,你能说一说自己是怎样想的吗?根据什么?

根据学生口述的结果,教师板书。

解:3x=18

3x÷3=18÷3

x=6

检验:方程左边=3x

=3×6

=18=方程右边

所以,x=6是方程的解。

强调:方程两边同时除以一个不为0的数,左右两边相等。解方程时,要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

(2)即时巩固。

解方程:45x=9 3.6x=7.56

  【课堂巩固】

完成课本第68页“做一做”第1题的后3题,第2题的后1题。

学生独立思考,独立完成解答过程,分两组,每三名学生一组进行板演,然后师生共同分析、讲解。

强调注意:2.1÷x=3这道题,先左右同时乘以x,再求解。

答案1.:x=4,x=2.1,x=0.7。

2. 3x=8.4 x=2.6

  【课堂小结】

提问:同学们,这一节课你学会了什么?有什么收获呢?

小结:这节课,我们知道了解方程要注意:根据等式的性质解方程时,要注意等号对齐,检验过程要写清楚,养成检验的良好习惯。

  【课后作业】

练习十五第3、4题。

《简易方程》教学设计4

  【教学内容】

教材第74页例2和练习十六的第1、5~11题。

  【教学目标】

1.通过教学使学生学会解形如ax±b=c的方程,并能正确列出这种形式的方程解应用题。

2.培养学生的分析能力。

3.引导学生感受列方程解应用题的优越性,在多种方法中选择简单的方法解决问题。

  【重点难点】

掌握解ax±b=c形式的方程的方法,并能正确找出题中数量间的相等关系。

  【教学准备】

多媒体课件。

教学过程

  【复习导入】

1.准备练习。

解方程。

4x=100 x-2.5=3 2x=15

根据已知条件列出方程。

①我们班有女生x人,男生60人,比女生的2倍少6人。

②我们班最低的同学身高x厘米,最高的同学身高170厘米,比最低同学身高的2倍少100厘米。

③亚洲人口约有39亿,比欧洲人口的5倍多4亿。欧洲人口约有x亿。

2.导入新课:这节课我们继续学习实际问题与方程。并板书:

  【新课讲授】

1.出示例2。

师:观察主题图,你能获取什么信息?

学生讨论、汇报。

2.探究解决问题的方法。

提问:白色皮块数与黑色皮块数之间有什么关系呢?观察下面的线段图你能 说出它们的数量关系式吗?

教师演示画线段图:

小组讨论,汇报:

黑色皮的块数×2-4=白色皮的块数

黑色皮的块数×2=白色皮的块数+4

黑色皮的块数×2-白色皮的块数=4

师:同学们都很细心,观察得非常仔细。用我们学过的列方程解应用题的知识怎样求黑色皮有多少块呢?

小组讨论交流、汇报:

方法一:根据等量关系式:黑色皮的`块数×2-4=白色皮的块数,把黑色皮块数设为x,列方程,再求出x。

2x-4=20

方法二:根据等量关系式:黑色皮的块数×2=白色皮的块数+4,把黑皮块数设为x,列方程,再求出x。

2x=20+4

方法三:根据等量关系式:黑色皮的块数×2-白色皮的块数=4,把黑色皮的块数设为x,列方程,再求出x。

2x-20=4

师:同学们很善于动脑筋。根据不同的数量关系列出了比较复杂的方程,但是怎样解这些方程呢?

3.探究列方程解决实际问题的步骤。

师:方程2x-20=4,2x=20+4和2x-4=20都比我们前面学到的更复杂了一些,怎样解这样的方程呢?

要求黑色皮的块数,根据题意,应该先求黑色皮的块数的2倍,即先求2x。因此,先把2x看作一个整体,再求x等于多少。

板书:2x-20=4

2x-20+20=4+20

2x=24

请学生独立完成下面的过程,求出x,写清过程,并检验。然后再把另外两个方程也解出来。

学生解答后,指名板演以上三种不同方法所列出的方程的解法。

方法一: 方法二: 方法三:

2x-4=20 2x=20+4 2x-20=4

2x-4+4=20+4 2x=24 2x-20+20=4+20

2x=24 2x÷2=24÷2 2x=24

2x÷2=24÷2 x=12 2x÷2=24÷2

x=12 x=12

提问:比较这三个方程的解法你发现什么相同之处?(发现它们都是转化为2x=24再解)

老师小结:像上面这样形式的方程,我们可以把2x看作一个整体,先求出2x等于多少,再求出x等于多少。

解方程步骤:

(1)找出未知数,用字母x表示;

(2)分析实际问题中的数量关系,找出等量关系,列方程;

(3)解方程并检验作答。

4.即时巩固。

解方程:

3x+6=36 2x-7.5=8.5 3+2x=12

  【课堂作业】

1.学生独立完成课本第75页练习十六第1题。

完成后集体订正。对于4x-3×9=29这道题给予适当指导,可以先算3×9。

2.完成教材第75页练习十六第5、6题。

师:结合上面的练习和刚才的例1,请同学们思考:列方程解决问题的步骤是什么?哪一步最关键?(找等量关系)

引导学生归纳:(用多媒体出示)

(1)弄清题意,找出未知数,用x表示;

(2)分析,找出数量间相等的关系,列方程;

(3)解方程;

(4)检验,写出答案。

  【课堂小结】

这节课你又学习了什么新知识?有什么收获?

  【课后作业】

教材第76页练习十六第7~11题。

《简易方程》教学设计5

  教学目标:

1.使学生初步学会

这一类简易方程的解法。

2.理解这类方程的格式。

3.进一步掌握解方程的格式。

  教学重点:

掌握解

这一类方程的解法。

  教学难点:

理解这一类方程的算理。

  教学步骤:

一、复习引入

复习方程的意义。

1.什么叫方程?

2.什么叫解方程?

二、新授教学

(一)教学例2

例2。看图列方程,并求出方程的解。

1.读题,理解题意。

2.分析图意,找等量关系。

3.教师提问

(1)观察图形你都知道了什么?

(2)怎样列方程?

4.列方程并解答。

(1)教师板书:3x=1500

(2)教师提问:应当先求什么?解这个方程要先算哪一步?

5.学生独立解答。

6.集体订正,板书全部解题过程。

3x=1500

解: x=15003

x=500

检验:把x=500代入原方程,

左边=3500,右边=1500,

左边=右边,

所以x=500 是原方程的解。

7.练习:

(二)教学例3

例3。解方程3x+100 =1000

1.思考

(1)例3与例2有什么相同点?有什么不同点?

(2)应该先算什么,再算什么,最后算什么?

2.学生独立解答,集体订正。

3.小结:解这一类方程,要先根据四则运算的.顺序,把方程中包含的计算算出来,再把与因数的积看成是一个数,根据四则运算各部分间的关系一步步求出解。

4.练习:解方程

三、课堂小结

今天你学习的解方程与以前所学的解方程有什么不同?

四、巩固练习

(一)口头解下列方程,并说出每一步的根据。

(二)解下列方程,并检验。

(三)在0.5、1.5、2.5、3.5、4这五个数中,

哪个数是方程0.5-1.5=0.5的解?

哪个数是方程220.5-2=4的解?

思考:怎样做比较简单?

五、课后作业

解方程

《简易方程》教学设计6

  【教学内容】

教材第83页的内容和练习十八的第1~9题。

  【教学目标】

1.通过学习使学生更加系统地掌握本单元所学的知识,进一步理解和掌握用字母表示数的含义、方法、等式的基本性质,提高解简易方程的能力。

2.通过对用列方程方法解决问题的整理和复习,进一步掌握列方程解决问题的思考方法和特点,体会列方程解决问题的优越性。

3.提高学生灵活选用合适的方法解答应用题的能力。

4.使学生养成自觉整理知识的良好习惯。

  【重点难点】

1.使学生更加系统完整地掌握本单元知识,进一步提高总结、归纳知识的能力。

2.通过整理和复习,进一步掌握用方程解决问题的思考方法和特点,提高灵活应用知识的能力。

  【知识梳理】

1.揭示课题:这节课我们一起来对本单元所学习的知识进行整理和复习。(出示课题)

2.整理知识点。

师:请同学们认真回顾,本单元我们学习了哪些知识?这些知识之间有什么联系?

小组合作归纳这部分内容后,汇报。

根据学生的汇报,教师帮助学生形成知识网络,板书:

  【复习提升】

1.复习用字母表示数。

提问:

(1)回忆一下,用字母可以表示什么?(用字母可以表示数、公式、运算定律、数量关系等等。)

(2)用字母表示数时有哪些简写的规定?

(3)用含有字母的计算公式求值时,应注意什么?

跟踪训练:

(1)用字母表示下面的运算定律和计算公式。

加法结合律:

加法交换律:

乘法结合律:

乘法交换律:

长方形的周长计算公式:

长方形的面积计算公式:

正方形的周长计算公式:

正方形的面积计算公式:

(2)城区修一条长a千米的公路,已经修了15天,每天修b千米,剩下的要c天完成。

①15b表示()

②a-15b表示()

③15+c表示()

④(a-15b)÷c表示()

(3)算一算。

当a=3,b=5.8,x=1.5时,求下列各式的值。

①40x+a②ab÷0.48

答案:(2)

①15天修的长度

②剩下没修的长度

③修完公路所用的总天数

④剩下的每天要修的长度

(3)

①40x+a=40×1.5+3=63

②ab÷0.48=3×5.8÷0.48=36.25

2.复习解方程。

(1)方程的'意义。

师:这个单元我们还学习了方程的意义,什么叫方程?

判断:下面的式子是不是方程?

①x÷b=3

②2x-7>9

③0.2x+4=6

④3b+2b=2.5

⑤12x-9x=8.7

⑥2.7+4.8=x÷2

小结:含有未知数的等式叫方程。

师:方程和等式有什么关系?你能用图示表示出来吗?

板书:

小结:方程一定是等式,等式不一定是方程。

(2)等式的性质。

师:等式有什么性质?

学生回答。

(3)解方程。

0.2x+4=6 12x-9x=8.7 3(x+2.1)=10.5

①想一想解方程的原理是什么?等式的性质是什么?

②举例:怎样验证0.2x+4=6,x=10是方程的解?

③什么叫解方程?什么是方程的解?

跟踪训练:

(1)完成课本第83页的第1题。

(2)完成课本练习十八的第1题。

答案:

(1)x=2.4 x=9.7 x=3.2

x=5 x=1.4 x=2.9

(2)X X√√

3.复习实际问题与方程。

师:请同学们回顾一下,列方程解决问题这部分,我们都学了哪些知识?

学生汇报:

(1)列方程解决问题的一般步骤是:

①理解题意,找出未知数,用x表示;

②分析,找出题中数量间相等的关系,列方程;

③解方程;

④检验并写出答案。

(2)列方程解应用题的关键是找出题中相等的数量关系。

(3)算术方法和方程方法有何区别?

跟踪训练:

1.找相等关系的练习。

A:长方形的周长为30m,长10m,宽多少米?

小结:策略一:我们可以利用计算公式找相等关系。

B:明明运动后的心跳比运动前快了55下。

师:能找到相等关系吗?还能找到不一样的相等关系吗?

小结:策略二:读懂关键句子,分析相等关系。

2.分析相等关系的练习。

妈妈去超市买了2箱方便面付给营业员100元,找回28元,设每箱方便面x元,下面()是错误的。

A.100-2x=28 B.2x+28=100

C.2x-100=28 D.2x=100-28

3.完成课本第83页的第2题。

4.完成课本练习十八的第3、6题。

答案:

1.A.(长+宽)×2=周长

B.运动后的心跳-运动前的心跳=55

运动前的心跳+55=运动后的心跳

运动后的心跳-55=运动前的心跳

2.C

3.(1)解:设两个月前他的体重是x千克。

x-3=93 x=96

答:两个月前他的体重是96千克。

(2)解:设这条街一共有x盏路灯。

5x=140 x=28

答:这条街一共有28盏路灯。

(3)解:设梅花鹿的高度为x米,则长颈鹿的高度为(x+3.65)米。

3.5x=x+3.65 x=1.46

1.46+3.65=5.11(m)

4.第3题:75次

第6题:长:0.6m,宽:0.3m,面积:0.18m

  【课堂小结】

提问:学习了这节课,你们有什么收获?还有什么疑问?

小结:学习了这节课,我更加系统完整地掌握了本章知识,进一步掌握了用方程解决问题的思考方法和特点。

  【课后作业】

课本练习十八的第1~2,4~5,7~9题。

标签: 教学设计