在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《《方程的根与函数的零点》教学设计3篇 方程的根与函数的零点教材分析》,希望对你的范文写作有所帮助。
下面是好范文小编分享的《方程的根与函数的零点》教学设计3篇 方程的根与函数的零点教材分析,欢迎参阅。
《方程的根与函数的零点》教学设计1
一、背景分析
1、学习任务分析
函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在新课程教学中有着不可替代的重要位置.为什么要引进函数的零点?原因是要用函数的观点统帅中学数学,把解方程问题纳入到函数问题中.引入函数的零点,解方程的问题就变成了求函数的零点问题.
就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.即体现了函数与方程的思想,又渗透了数形结合的思想.总之,本节课渗透着重要的数学思想 “特殊到一般的归纳思想” “方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
2、学生情况分析
学生在学习本节内容之前已经学习了函数的图象和性质,理解了函数图象与性质之间的关系,尤其熟悉二次函数,并且已经具有一定的数形结合思想,这为理解函数的零点提供了直观认识,并为判定零点是否存在和求出零点提供了支持;学生有一定的方程知识的基础,熟悉从特殊到一般的归纳方法,这为深入理解函数的零点及方程的根与函数零点的联系提供了依据.但学生对于函数与方程之间的联系缺乏一定的认识,对于综合应用函数图象与性质尚不够熟练,这些都给学生在联系函数与方程,发现函数零点的存在性事造成了一定的难度。又加上函数零点存在性的判定方法表述较为抽象难以概括。因此教学中尽可能提供学生动手实践的机会,让学生亲身体验中掌握知识与方法,充分利用学生熟悉的二次函数图象和一元二次方程通过直观感受发现并归纳出函数零点的概念;在函数零点存在性的判定方法的教学时
应该为学生创设适当的问题情境,激发学生的思维引导学生通过观察、计算、作图、思考理解问题的本质。
二、教学目标设计
1、结合《课程标准》对本节的要求,制定本节课的教学目标为:
(1)、以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数的零点的关系.
(2)、掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。
(3)、让学生在探究过程中体验发现的乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生的辨证思维以及分析问题解决问题的能力。
2、教学重点难点设计
重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
三、教学媒体设计
根据本节课的教学任务以及学生学习的需要,教学媒体设计如下:
1、多媒体辅助教学
在对某区间上图象连续的函数存在零点的判定方法的探究过程中,利用小马过河的形象实例把抽象的判定定理还原到具体的可观察可操作的层面上来,弱化纯粹的逻辑推理,把“数”转化到了“形”.
多媒体使用也为学生提供了更广阔的思维空间,提高了探究活动的质量。同时,为有效的指导学生活动,在教学中也使用了实物投影仪,展示学生所做的练习,并在此过程中队学生进行针对性的评价。
2、设计合理的板书
为对本课有一个整体的认识,教学时将重要内容进行板书,如:
四、教学过程设计
(一)设问激疑--创设情境问题1:求下列方程的根.(1)(2)(3)
设计意图:从学生较为熟悉的方程(一元一次、一元二次方程)出发,再提出稍微难一点的方程符合学生的认知规律,进而使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲。
(二)启发引导,初步探究问题2:作出下列二次函数的图象
(1)y=x2+2x-3 (2)y=x2+2x+1 (3)y=x2+2x+3以上各函数图象与相应方程的根有何关系?
设计意图:与问题1联系起来结合一次、二次函数图象,判断方程根的存在性及根的个数,为理解函数的零点,了解函数的零点与方程根的联系作准备,充分发挥学生的主观能动性。问题3:二次函数y=ax2+bx+c (a≠0)的图象与x轴交点和相应一元二次方程ax2+bx+c=0(a≠0)的根有何关系?
设计意图:把具体的结论推广到一般情况,向学生渗透“从最简单、最熟悉的问题入手解决较复杂问题”的思维方法,培养学生的归纳能力.
由此的出结论:二次函数图象与x轴交点的横坐标就是相应方程的实数根。
(三)形成概念
归纳:方程f(x)=0的实数根就是函数y=f(x)图象与x轴交点的横坐标。定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。由此引出课题:等价关系
设计意图:让学生从熟悉的环境中发现新知识,并与原有的知识形成联系,利用方程与函数的联系,培养学生观察、归纳的能力,并渗透数形结合的数学思想。
《方程的根与函数的零点》教学设计2
学习目标
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2.掌握零点存在的判定定理.
学习过程
一、课前准备
(预习教材P86~P88,找出疑惑之处)
复习1:一元二次方程+bx+c=0(a0)的解法.
判别式=.
当0,方程有两根,为;
当0,方程有一根,为;
当0,方程无实根.
复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?
判别式一元二次方程二次函数图象
二、新课导学
※学习探究
探究任务一:函数零点与方程的根的关系
问题:
①方程的解为,函数的图象与x轴有个交点,坐标为.
②方程的解为,函数的图象与x轴有个交点,坐标为.
③方程的解为,函数的图象与x轴有个交点,坐标为.
根据以上结论,可以得到:
一元二次方程的根就是相应二次函数的图象与x轴交点的.
你能将结论进一步推广到吗?
新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint).
反思:
函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?
试试:
(1)函数的零点为;(2)函数的零点为.
小结:方程有实数根函数的图象与x轴有交点函数有零点.
探究任务二:零点存在性定理
问题:
①作出的图象,求的值,观察和的符号
②观察下面函数的图象,
在区间上零点;0;
在区间上零点;0;
在区间上零点;0.
新知:如果函数在区间上的图象是连续不断的一条曲线,并且有<>
讨论:零点个数一定是一个吗?逆定理成立吗?试结合图形来分析.
※典型例题
例1求函数的零点的个数.
变式:求函数的零点所在区间.
小结:函数零点的求法.
①代数法:求方程的实数根;
②几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
※动手试试
练1.求下列函数的零点:
(1);
(2).
练2.求函数的零点所在的大致区间.
三、总结提升
※学习小结
①零点概念;②零点、与x轴交点、方程的.根的关系;③零点存在性定理
※知识拓展
图象连续的函数的零点的性质:
(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.
推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.
(2)相邻两个零点之间的函数值保持同号.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.函数的零点个数为().
A.1B.2C.3D.4
2.若函数在上连续,且有.则函数在上().
A.一定没有零点B.至少有一个零点
C.只有一个零点D.零点情况不确定
3.函数的零点所在区间为().
A.B.C.D.
4.函数的零点为.
5.若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为.
课后作业
1.求函数的零点所在的大致区间,并画出它的大致图象.
2.已知函数.
(1)为何值时,函数的图象与轴有两个零点;
(2)若函数至少有一个零点在原点右侧,求值.
《方程的根与函数的零点》教学设计3
一、教学目标
(1)知识与技能:
结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。
(2)过程与方法:
培养学生观察、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。
(3)情感态度与价值观:
在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。
二、教学重难点
重点:体会函数零点与方程根之间的联系,掌握零点的概念
难点:函数零点与方程根之间的联系
三、教法学法
以问题为载体,学生活动为主线,以多媒体辅助教学为手段利用探究式教学法,构建学生自主探究、合作交流的平台
四、教学过程
1.创设问题情境,引入新课
问题1求下列方程的根
师生互动:问题1让学生通过自主解前3小题,复习一元二次方程根三种情形。
问题2填写下表,探究一元二次方程的根与相应二次函数与x轴的交点的关系?
师生互动:让学生自主完成表格,观察并总结数学规律
问题3完成表格,并观察一元二次方程的根与相应二函数图象与x轴交点的关系?
师生互动:让学生通过探究,归纳概括所发现结论,并能用相对准确的数学语言表达。
2.建构函数零点概念
函数零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。
思考:
(1)零点是一个点吗?
(2)零点跟方程的根的关系?
(3)请你说出问题2中3个函数的零点及个数?(投影问题2的表格)
师生互动:教师逐一给出3个问题,让学生思考回答,教师对回答正确学生给予表扬,不正确学生给予提示与鼓励。
3.知识的延伸,得出等价关系
(1)方程f(x)=0有实数根(2)函数y=f(x)有零点
(3)函数y=f(x)的图象与x轴有交点