在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《《分数乘法三》教学反思3篇 分数乘法三第二课时教学反思》,希望对你的范文写作有所帮助。
下面是好范文小编整理的《分数乘法三》教学反思3篇 分数乘法三第二课时教学反思,供大家参考。
《分数乘法三》教学反思1
在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。
本单元的.重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:
分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。
分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。
分数乘法(三)通过对具体问题的解决,进一步巩固“求一个数的几分之几是多少”的乘法意义,并探索和理解分数乘分数的计算法则
从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。
在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。
《分数乘法三》教学反思2
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的'机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
《分数乘法三》教学反思3
本节课教学的是分数乘分数,重点是巩固和理解分数乘法的意义,探索分数乘分数的计算方法。由于五年级学生已有了一定的自学能力,所以课前已经有学生知道分数乘分数的计算方法,但只是知其然而不知其所以然,所以这节课要让学生理解分数乘分数的计算方法。
在教学实践中我采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。由于学生对“求一个数的'几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
1、先复习求一个整数的几分之几是多少,进一步使学生明白求一个数的几分之几是多少要用乘法,而且是用一个数乘几分之几,为后面顺利列算式求1/2的1/2及1/4的1/2作知识和方法的储备。
2、引导学生通过用算式表示图形,再用图形表示算式,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。在第一个情境中,先引导学生理解“第二次剪去剩余部分的1/2就是剪去1/2的1/2,第三次剪去剩余部分的1/2就是求1/4的1/2,结合线段图理解到1/2的1/2就是1/4,1/4的1/2就是1/8,列出算式就是1/2×1/2=1/4,1/4×1/2=1/8。在折一折中,以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后根据图形表示出算式的计算结果,这样做的目的是通过“以形论数”和“以数表形”的过程帮助学生巩固分数乘法的意义,体会分数乘分数的计算方法。
3、让学生运用数形结合的方法独立完成教材中的做一做,进一步达成以上目标,为总结分数乘分数的计算方法积累认知。整体教学的效果很好。