热门标签最近更新文档搜索存到桌面欢迎您访问好范文,请记住我们的网址 www.hfanwen.com

当前位置:首页 > 实用文档 > 内容页

数学《公约数》教案7篇(公约数教学设计)

分类:实用文档发表于 2024-04-11 15:25阅读数:0

在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《数学《公约数》教案7篇(公约数教学设计)》,希望对你的范文写作有所帮助。

下面是好范文小编分享的数学《公约数》教案7篇(公约数教学设计),供大家阅读。

数学《公约数》教案1

  教学过程

一、基本练习

1、填空。(课本上第1题)

让学生先填在课本上再交流。

2、下面每一组数有没有公约数2、5或3?

12和3624和3272和8460和45

27和10857和8475和10518和24

先让学生同桌间讨论,再全班交流,提高学生运用能被2、5、3整除的数的特征判断两个数的公约数的能力。

3、说出下面各组数的公约数。

6和109和1210和20xx和26

50和2516和2122和3318和24

学生先独立思考每道题,再集体交流,让学生说说是怎么想的,注意小结成倍数关系和互质数关系的两个数判断最大公约数的方法。

4、下面各组哪些是互质数。

5和79和108和2190和15

24和131和3552和1317和34

学生先小组交流,再汇报,并让学生说说判断时是怎样想的?为什么说是互质数或不是互质数?让学生暴露思维过程,引导他们正确思维。

二、综合练习

1、求出下面各组数的最大公约数。

28和63135和45

40和3917和51

42和5660和48

学生先独立计算,三名同学板演,再全班汇报交流,讨论一下有没有特殊方法,可以怎么思考。

2、求出下面每组数的最大公约数。

12、30和4215、40和6030、20和50

每人选做两题,三名同学板演,再全班交流讨论。讨论时引导学生说说用短除法求以外,还有什么特殊的.方法可以求出最大公约数

三、发展练习

出示题目:老师家的厨房要铺正方形地砖(如下页右图),需选边长为几分泌(整数)的地砖,才能铺得即整齐又节约?

1、让学生通过计算,思考找出可以用的地砖的边长分别是什么,应该怎么铺(几行,每行几块),发现答案有多种,边长分别可以是1、2、3、6。

2、再问学生,如果想铺起来快一点,哪一种方法最好?为什么?

3、最后引导学生发现其实1、2、3、6都是36、30的公约数,6是它们的最大公约数。

四、课堂小结

通过今天这节课的学习,你有什么收获?你还有什么不明白的地方吗?

五、作业《作业本》

练习中第4题判定互质数是个难点,练习时让学生说说判断时是怎样想的,暴露思维过程,要让学生熟练掌握组成互质数的几种不同形式。

  课后反思:

通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?

数学《公约数》教案2

教学内容:求两个数的最大公约数

教学目标;

使学生理解求两个数的最大公约数的算理,学会求两个数的饿最大公约数的饿方法。

教学过程:

一、复习

1、什么叫公约数,最大公约数和互质数,举出一组互质数

2、写出36的约数,60的约数,36和60的公约数,36和60的最大公约数

二、教学新课

1、提出问题:求两个数的最大公约数。用上面的方法求两个数的最大公约数,很不方便,有没有更简便的方法呢,这就是我们今天要学的内容;

2、教学例3

我们可以这样想:把36和60分别分解质因数,把他们的最大公约数12也分解质因数,观察以下,他们有什么联系?

观察、比较、议论:

(1)36和60的公有约数是几,全部公有质因数的连乘的积是多少?

(2)36和60的公有质因数与他们最大公约数12的质因数相比,有什么发现?

(3)用短除法求最大公约数。

(4)引导学生观察,比较,议论。

3、巩固练习

4、试一试求下面两题的'最大公约数。

5、教学例4

(1)求出下面各组数的最大公约数

(2)引导学生探求观察思考

观察上面三组数和他们各自的最大公约数,发现什?

6、教学例5

(1)求出下面各组数的最大公约数

(2)引导学生观察、探索、发现这些数的最大公约数

(3)教师学生共同

(4)练一练

(5)求下面各组数的最大公约数

三、布置作业

反思:我认为这几点我做的不好:

1、没有让学生真正懂得为什么两个数全部共有质因数连乘的积就是这两个数的最大公约数。所以在下面的练习中学生知识照搬照抄。缺乏灵活性。

2、对于有特点的两组数:互质数和约数关系时的教学缺乏举例,与学生的自我思考。

数学《公约数》教案3

教学目标

(1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。

(2)综合运用知识,进一步沟通知识间的联系。

教学重点、难点

重点、难点:能够根据不同,灵活运用简捷的方法。

教具、学具准备

教 学过程

备 注

一、基本练习

1、填空。(课本第67页第7题)

(1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。

(2)20以内既是偶数又是素数的数是(),既是奇数又是合数的`数是()

(3)在4、9和16中,成互质数的两个数有()和();()和()。

(4)三个素数的最小公倍数是42,这三个素数是()、()和()。

(5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。

学生先填在书上,再集体交流讨论,注意让学生说说思考方法。

2、很快说出下面每组数的最大公约数和最小公倍数。

11和49和65、10和20

16和1580和20年5、6和7

说的过程中注意让学生说出思考的过程及理由。

3、求下面各组数的最大公约数和最小公倍数。

80和10015、8和30

25和330、60和75

19和388、9和10

让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。

二、综合练习

1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?

整数自然数整除约数倍数

奇数偶数合数素数质因数

公约数最大公约数公倍数最小公倍数

教学过程

备 注

例2:2和8都是自然数,8能被2整除,8是2的倍数。

2、动脑筋:下面每组数中,你能找出不同类的数吗?

(1)1473.82345

(2)21216223647

(3)23792943

学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.

3、猜一猜老师家的电话号码.

老师家的电话号码是七位数,排列如下:

()最小的素数

()7的最大约数

()8的最小倍数

()最小的自然数

()最小的合数

()最小的一位奇数

()既不是素数也不是合数的数

三、课堂

师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?

四、作业

1、课本上第9、10题中剩余题目各选一列。

2、《作业本》

教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数

数学《公约数》教案4

教学目标

(1)使学生初步了解公约数、最大公约数和互质数的概念。

(2)学会求几个数的公约数和最大公约数。

教学重点、难点

重点:求几个数的公约数和最大公约数

难点:判断互质数

教具、学具准备

教学过程

备注

一、复习准备

1、指名板演

18和30的约数各有哪几个?

18的约数有:

30的约数有:

2、口答:

(1)什么叫做约数?

(2)下面各数中,哪些数有约数2?哪些数有约数3?哪些数有约数5?

901117284108115

(3)说出下面每一个自然数的全部约数。

17151237

这几个自然数中哪几个是素数?为什么?(出示素数定义)

二、教学新知

1、教学新知。

出示例1(板演题上补充问题)教学。

(1)教师指出:1既是18的约数,又是30的约数,我们就说1是18和30的公有的约数。

(2)18和30公有的约数还有哪几个?(板书:18和30公有的'约数有:1、2、3、6。)

(3)在这些公有的约数中最大的一个公有的约数是几?(板书:其中最大的一个公有约数是6。)

(4)出示P47图

(5)归纳:“公有的约数”简称什么数?“最大的一个公有的约数”又简称为什么数?引导学生阅读书上结语。例如:18和30的公约数有1、2、3、6;18和最大公约书是6。

2、试一试。

(1)书P47“试一试”填在书上后讲评。紧接着讨论:约数、公约数、

教学过程

备 注

最大的公约数有什么区别?

(2)18和42这一组数里有没有公约数?2有没有公约数3?有没有公约数5?你是怎么想的?(根据能被2、3、5、整除的数的特点来判断。)

(3)口答P49第3题。

3、出示例2教学。

(1)指一名学生板演,其它填在书上表格当中。

(2)这几组数的公约数有什么特点?

(3):公约数只有1的两个数,叫做互质数。(出示定义)例如,互质的两个数有四种情况。边讲边板书:

①两个数都是素数。如5和11;

②两个数都是合数。如9和16;

③一个合数,一个素数。如30和29;

④1和另一个自然数。如1和8。

4、练习、判断:

(1)指出下面哪一组中的两个数是互质数。哪一组中的两个数不是互质数。为什么?

8和927和151和72和1513和54和24

(2)判断。正确的打√,错误的打X。

①所有自然数的公约数是1。()

②如果两个数是互质数,那末这两个数必定是互质数。()

③如果两个数都是素数,那么这两个数必定是互质数。()

④相邻的两个自然数都是互质数。

⑤两个自然数中有一个数是1,这两个必然是互质数。()

以上判断正误,要求说出理由。

(3)讨论:从以上的练习,可以知道,怎样判断两个数是不是互质数?

三、巩固练习

P.48第1题、P49第2、6题。

四、教学

这节课,我们学习了什么,什么叫做公约数、最大公约数和互质数?

求两个数或三个数的最大公约数,除刚才学过的方法以外,还有一种简便的方法,下节课再学。

五、作业《作业本》

从约数着手,层层深入,得出公约数和最大公约数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。从公约数的个数上,引出互质数概念,并引导学生经过探索,得出互质数的组成方式。

课后反思:教学“求最大公约数”,课本共安排了三个例题及一个“做一做”,教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:“两个数的最大公约数也就是这两个数的差。”教师问:“有什么根据?”学生回答说:首先肯定了学生善于观察和思考的,接着又向学生指出:“是巧合呢,还是真有这样的规律存在呢?”学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。

数学《公约数》教案5

教学目标

1.使学生掌握公约数、最大公约数、互质数的概念.

2.使学生初步掌握求两个数的最大公约数的一般方法.

教学重点

理解公约数、最大公约数、互质数的概念.

教学难点

掌握求两个数的最大公约数的一般方法.

教学步骤

一、铺垫孕伏.

1.说出什么是约数、质因数、分解质因数.

2.求18、20、27的约数

3.把18、20、27分解质因数

二、探究新知.

教师引入:我们已经会求一个数的约数了,这节课我们学习怎样求两个数公有的约数.

(一)教学例1【演示课件 “最大公约数”】

8和12各有哪些约数,它们公有的约数有哪几个?最大的公有的约数是多少?

板书:8的全部约数:1、2、4、8

12的全部约数:1、2、3、4、6、12

学生交流:发现了什么?

学生汇报:8和12公有的约数是:1、2、4

最大的公有的约数是:4.(教师板书)

1.总结概念:8和12公有的约数,叫做8和12的公约数.

1、2、4是8和12的公约数.公约数中最大的一个叫做最大公约数,4是8和12的最大公约数.

2.阅读教材,理解公约数、最大公约数的意义.

3.反馈练习:把15和18的约数、公约数分别填在下面的圈里再找出它们的最大公约数.

(二)教学互质数【演示课件“互质数”】

1.5和7的公约数和最大公约数各是多少?7和9呢?

5的约数:1、5 7的约数:1、7

7的约数:1、7 9的约数:1、3、9

5和7的公约数:1 7和9的公约数:1

5和7的最大公约数:1 7和9的最大公约数:1

教师提问:有什么共同点?(公约数和最大公约数都是1)

教师点明:公约数只有1的两个数,叫做互质数.

2.学生讨论:8和9是不是互质数,为什么?

强调:判断两个数是不是互质数,只要看这两个数的公约数是不是只有1.

3.分析:质数和互质数有什么不同?

(意义不同,质数是对一个数说的,互质数是对两个数的关系说的.)

4.反馈练习:学生举例说明互质的数.

(三)教学例2.

求18和30的最大公约数.

1.用短除法把18和30分解质因数.

2.教师提问:根据结果能否知道18和30的约数各有哪些?怎么想的?

明确:根据分解质因数的方法可以求一个数的约数.

3.师生归纳:18和30的约数,要能整除18,又能整除30,就必须包含18和30公有的质因数.最大公约数是公约数中最大的,它就必须包含18和30全部公有的质因数2和3.2×3=6,所以18和30的最大公约数是6.

4.教学求最大公约数的一般书写格式.

启发:为了简便能不能边分解质因数边找公有的质因数?

(把两个短除式合并)

18和30的最大公约数是2×3=6

5.反馈练习:求12和20的最大公约数.

6.小结求两个数的最大公约数的方法.

①学生讨论.

②师生归纳:求两个数的最大公约数,一般先用这两个数公有的'质因数去除,一直除到所得的商是互质数为止,然后把所有的除数乘起来.

③教师说明:做短除法时,除数通常是这两个数公有的质因数,并从最小的开始除起;也可以用一个合数去除,只要能够整除这两个数就行.

④反馈练习:求36和54的最大公约数.

三、全课小结.

今天这节课我们主要研究了用什么方法求两个数的最大公约数及相应概念,(板书:最大公约数)它是为以后学习约分做准备的,希望同学们知道知识间是有必然联系的.

四、随堂练习.【演示课件“练习”】

1.填空.

(1)( )叫做这几个数的公约数,其中( )叫做这几个数的最大公约数.

(2)( )叫做互质数.

(3)求两个数的最大公约数,一般先用这两个数( )连续去除,一直除到所得的商是( )为止,然后把( )连乘起来.

2.先把下面的两个数分解质因数,再求出它们的最大公约数.

12=( )×( )×( )

30=( )×( )×( )

12和30的最大公约数是( )×( )=( )

3.判断.

(1)3和5是互质数.( )

(2)6和8是互质数.( )

(3)1和6是互质数.( )

(4)1和44不是互质数.( )

(5)14和15不是互质数.( )

五、布置作业.

求下面每组数的最大公约数.

6和9 16和12 42和54 30和45

六、板书设计

数学《公约数》教案6

  教学内容:求三个数的最大公约数

  教学目标:

使学生学会求三个数的最大公约数的方法,并能正确的求三个数的最大公约数

  教学过程:

一、复习

1、怎样求两个数的最大公约数

2、写出18、24、36的约数和他们的最大公约数

二、教学新课

1、提出课题

怎样求出三个数的最大公约数

2、教学例3

求18、24、36的最大公约数

(18.24,36)=2×3=6

3、观察、比较、讨论

(1)求山歌书的`最大公约数与两个数的最大公约数的方法相同

(2)归纳:求几个数的最大公约数,先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的公约数连乘起来。

三、巩固练习

1、试一试

求最大公约数6、12和244、7和9

2、练一练

求下面各组数的最大公约数。

15、20和2524、36和60

14、21和289、15和24

5、6和728、56和70

8、16和48105、34和30

55、22和12115、16和30

四、归纳

五、布置作业

反思:对于这类数的教学缺乏指导

1、最小的数是另两个数的约数。

2、当三个数中有两个数是互质数是,那么这三个数的最大公约数就是1。

数学《公约数》教案7

教学内容:教材P/55-56页例1、例2、例3,完成“练一练”及P/58页练习十第1-5题。

教学要求:

1、知识与能力:使学生理解公约数、最大公约数、互质数的意义。掌握特殊的两数最大公约数的求法。

2过程与方法:利用直观教具帮助学生建立概念的表象。

3.情感与态度:培养学生的分析能力的思维能力。

教学重点:教学三种情况下求两数最大公约数的方法。

教学难点:掌握特殊的两数最大公约数的求法。

教学过程:

一、复习铺垫。

请你回忆并说说有关约数的知识。

二、教学新知。

1、教学例1。

(1)出示例1

(2)学生自己尝试完成。一人板演。

12的约数有:1、2、3、4、6、12

30的约数有:1、2、3、5、6、10、15、30

12和30的公约数有:1、2、3、6

其中最大的一个约数是:6

(3)教师用集合图表示:

12的约数30的约数

(4)请你做一回数学家,给上述12和30公有的.约数及其最大的约数起一个名称。

板书;公约数最大公约数

(5)完成P/56练一练第1题。

2、教学例2。

(1)出示例2

(2)用上面学到的方法尝试。

(3)交流。

(4)把P/55的图填完整。

(5)观察、思考:你有没有发现2和3的公约数、最大公约数有什么特别?

(公约数只有1,最大公约数也是1)

到书上找一找看,象这样的两个数,叫做什么数?

你能再举一些这样的数吗?找一找它们的最大公约数。

(6)你发现了没有,如果两个数是互质数,它们的最大公约数是几?

3、教学例3。

(1)出示例7

(2)自己完成。

(3)看一看,想一想:6和12的最大公约数与6和12有什么关系?什么样的两个数它们的最大公约数才是比较小的那个数?

(4)请你举例验证。

(5)得出结论:如果较小的那个数是较大的那个数的约数,那么它们的最大公约数就是较小的那个数。

4、完成P/56“练一练”第2题。

三、课内作业。P/58练习十第1、2、3、4、5

四、课内。

五、课外作业。

求出P/58练习十第2、3题中每组数的最大公约数。

标签: 教案