热门标签最近更新文档搜索存到桌面欢迎您访问好范文,请记住我们的网址 www.hfanwen.com

当前位置:首页 > 实用文档 > 内容页

对数函数教案

分类:实用文档发表于 2023-05-02 11:25阅读数:0

在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《对数函数教案》,希望对你的范文写作有所帮助。

下面是好范文会员“aoguaweiwei”收集的对数函数教案(共5篇),以供借鉴。

函数教案 篇1

一、 教学目标

1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.

2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.

3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.

4.培养学生求真务实、实事求是的科学态度.

二、 重点、难点、关键

重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.

难点:把三角函数理解为以实数为自变量的函数.

关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).

三、 教学理念和方法

教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.

根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.

四、 教学过程

[执教线索:

回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业]

(一)复习引入、回想再认

开门见山,面对全体学生提问:

在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?

探索任意角的三角函数(板书课题),请同学们回想,再明确一下:

(情景1)什么叫函数?或者说函数是怎样定义的?

让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:

传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.

现代定义:设a、b是非空的数集,如果按某个确定的对应关系f,使对于集合a中的任意一个数,在集合b中都有唯一确定的数 f(x)和它对应,那么就称映射?:a→b为从集合a到集合b的一个函数,记作:y= f(x),x∈a ,其中x叫自变量,自变量x的取值范围a叫做函数的定义域.

数学对数函数教师教学反思 篇2

本节课在备课组全体老师集体备课后,课堂教学设计完成得很好,课件的制作精美实用,学案的设计适当充分。各人再根据具体班级的情况去修改某些细节。

本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我还是采用了知识迁移及类比的学习方法进行本节课的设计。

回顾了指数函数的概念及性质以后,通过把指数式写成对数式的小练习,学生很轻松的完成把指数函数式写成对数函数式。进而引出课题。学生自主阅读课本70页内容后完成学案的第一部分,基本上能够理解对数函数的概念。并且很自觉的主动动手画图,观察图形得出性质,在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等,性质的应用的设计我只采用了比较大小及求定义域两个例题及练习。学生完成得还不错,但在时间上还应多给予学生独立思考的时间。还需加强习题的变式能力。

高中数学对数函数教案模板 篇3

教学目标:

1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培养学生数形结合的思想,以及分析推理的能力.

教学重点:

对数函数性质的应用.教学难点:

对数函数的性质向对数型函数的演变延伸.教学过程:

一、问题情境

1.复习对数函数的性质.2.回答下列问题.

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3.情境问题.

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题.三、数学运用

例1 求函数y=log2(x2+2x+2)的定义域和值域.练习:

(1)已知函数y=log2x的值域是[-2,3],则x的范围是.(2)函数,x(0,8]的值域是.(3)函数y=log(x2-6x+17)的值域.(4)函数 的值域是.例2 判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(-x)

例3 已知loga >1,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a>0,a≠1).(1)求函数的定义域与值域;

(2)求函数的单调区间.练习:

1.下列函数(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).2.函数y=lg(-1)的图象关于 对称.3.已知函数 (a>0,a≠1)的图象关于原点对称,那么实数m=.4.求函数 ,其中x [,9]的值域.四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).五、作业

课本P70~71-4,5,10,11.

对数函数教学设计 篇4

对数函数的教学反思

王莉

高二年级数学组

“对数函数”的内容包括对数函数的定义,图像及性质和对数函数的应用。对数函数的定义,图像及性质是在学习对数概念的基础上学习对数函数的定义和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,引导学生动手画两个图象,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生数形结合的能力。

我校绝大部分学生数学基础差,理解能力、运算能力、思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出对数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

高中数学对数函数经典练习题及答案 篇5

教学设计

课例名称: 高中数学必修一 对数函数及其性质 讲课教师: 王英娟(石家庄市第十五中学)【教材分析】

本节课选自《普通高中课程标准数学教科书数学必修

(一)》(人教版)第二章基本初等函数(1) 对数函数及其性质(第一课时),主要 内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。2.教学目标的确定及依据

结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下教学目标:

(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型。

(2)能画出具体对数函数的图象,学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力。

(3)通过类比指数函数性质研究对数函数,培养学生运用类比的思想研究数学问题的素养。3.教学重点、难点

重点:掌握对数函数的图象和性质。

难点:难点是探究底数对对数函数图象及性质变化的影响。

二、学生学习情况分析

刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于 函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。尤其作为对数函数的第一课时,教师在教学中要控制难度,关注学生学习过程的体验。

三、设计思想

本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对 学生现有的认知水平,对数函数的教学首先要挖掘其知识背景贴近学生实际,让学生充分体验到数学的应用价值;其次,激发学生的学习热情,引导他们找到学习对数函数的思路(类比学习指数函数的思路),然后把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,改以前满堂教的方式为让学生满堂学,让学生学会学习。

四、教学基本流程:

五、教学过程:

根据新课标的要求我将本节课分为五个环节:创设情境,形成概念。

(一)创设情境,形成概念

本节课我是从课本中给出的“考古实例”和学生熟悉的“细胞分裂”实例这样两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点。我的引入材料是这样的: 1 .请同学们认真阅读材料,解决材料中提出的问题: 材料 1 :考古实例(材料 1 给出 后面的观察提供必要的感性材料)材料 2 :细胞分裂实例。

过程,既化解难点,又为第一问引导学生有目的用生成细胞个数 x 表示出细胞分裂次数 y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个 y 是否都有唯一的 x 与之相对应,为了帮助学生理解,可以借助指数函数图像加以解释,从而得到 x=log2 y 是一个函数,但它又和我们平时所见过的函数形式不一样,我们习惯上用 x 来表示自变量,y 表示函数,所以将其改写成 y=log2 x , 这样的函数称之为对数函数,引出本节课题。

2 .这两个函数有什么共同特征?(引导学生观察这两个函数的特征)有了学习指数函数的经验,再结合以上两个实例,学生不难归纳总结出对数函数的一般定义。

3 .给出对数函数的定义(提炼出对数函数的概念,明确对数函数的结构特征)想一想:字母 a、x、y 的含义及取值范围。

总结出三点:(1)对数符号前系数为 1 ;(2)底数是不为 0 的正常数;(3)真数是一个自变量 x 的形式。(二)合作探究,总结规律

1 .你能类比指数函数的研究思路,说说对数函数的研究思路吗?

引导学生回顾指数函数的研究思路,强调数形结合,强调函数图象在研究性质中的作用。

关于如何得到对数函数图像我的想法是这样的:一方面描点法画图是学生需要掌握的一类重要的画图方法,而且让学生去亲身经历画出对数函数图像的过程,这样记忆会更深刻,所以我决定将课堂交给学生,让他们自主探究,然后通过实物投影全班同学一起交流,对学生们的共同问题集中解决。2 .在同一坐标系中作出下列对数函数的图象:

(1)(2)(3)(4)

我们估计学生可能遇到的困难是对数运算,所以我们坐标纸上附了列表(列表的用意:多描点,使图像更准确;便于底数分部规律、对称性等的发现.)请完成 x,y 的对应值表,并用描点法画出函数图像.

标签: 教案