想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《高三数学知识点汇总归纳(精选32篇)》,希望对你的范文写作有所帮助。
高三数学知识点汇总归纳(精选32篇)
高三数学知识点汇总归纳 篇1
高三上册数学知识点整理
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
人教版高三数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
高三数学知识点汇总归纳 篇2
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
高三数学知识点汇总归纳 篇3
1.等差数列的定义
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
3.等差中项
如果A=(a+b)/2,那么A叫做a与b的等差中项.
4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).
(2)若{an}为等差数列,且m+n=p+q,
则am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
(5)S2n-1=(2n-1)an.
(6)若n为偶数,则S偶-S奇=nd/2;
若n为奇数,则S奇-S偶=a中(中间项).
注意:
一个推导
利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
两个技巧
已知三个或四个数组成等差数列的一类问题,要善于设元.
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种方法
等差数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证Sn=An2+Bn.
注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.
高三数学知识点汇总归纳 篇4
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数
1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;
2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。
高三数学知识点汇总归纳 篇5
三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的`式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题。
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+……+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
正弦、余弦典型例题。
1、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
2、已知α为锐角,且,则α的度数是A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B为锐角,则∠C的度数是A、75°B、90°C、105°D、120°
4、若∠A为锐角,且,则A=A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
正弦、余弦解题诀窍。
1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理。
2、已知三边,或两边及其夹角用余弦定理
3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
高三数学知识点汇总归纳 篇6
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的.方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
高三数学知识点汇总归纳 篇7
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数
1、映射:注意
①第一个集合中的元素必须有象;
②一对一,或多对一。
2、函数值域的求法:
①分析法;
②配方法;
③判别式法;
④利用函数单调性;
⑤换元法;
⑥利用均值不等式;
⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);
⑧利用函数有界性;
⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;
(2)是奇函数;
(3)是偶函数;
(4)奇函数在原点有定义,则;
(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
高三数学知识点汇总归纳 篇8
1、三类角的求法。
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱。
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中。
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
高三数学知识点汇总归纳 篇9
一个推导
利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
高三数学知识点汇总归纳 篇10
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
高三数学知识点汇总归纳 篇11
①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。
⑶特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。
⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。
⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。
⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径。
[注]:
i、各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。(×)(各个侧面的等腰三角形不知是否全等)
ii、若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。
简证:AB⊥CD,AC⊥BD
BC⊥AD。令得,已知则。
iii、空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。
iv、若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。
简证:取AC中点,则平面90°易知EFGH为平行四边形
EFGH为长方形。若对角线等,则为正方形。
高三数学知识点汇总归纳 篇12
付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二个是平面向量和三角函数。重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三,是数列,数列这个板块,重点考两个方面:一个通项;一个是求和。
第四,空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。
第五,概率和统计,这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
第六,解析几何,这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七,押轴题,考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高三数学知识点汇总归纳 篇13
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的'话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567
项:45678910
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
5.递推数列
一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①
数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
高三数学知识点汇总归纳 篇14
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0?;a-b=0?;a-b0,则有>1?;=1?;b?;
(2)传递性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可开方:a>b>0?(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:①a>b,ab>0?b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:(b-m>0);
②假分数的性质:>;0).
高三数学知识点汇总归纳 篇15
09年的这一个学期是忙碌而充满激情的一个学期半年来的风风雨雨让我获益多多。表现的不仅是在教学上,更多的时候是自己的提高上!
一、科学备考认真命题
本学期我们在上好复习的同时,非常重视每次考试的命题工作为此,我们每一位老师都付出了大量的.心血从选题到打印出试题都很认真,从知识点的考察到学习内容的配备
我们都进行了认真的筛选和反复修改保证每次的命题都达到训练的要求!
二、重视课堂教学注重师生互动
我们每位数学教师都是课堂教学的实践者为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想把数学教学看成是师生之间学生之间交往互动共同发展的过程在教研组长的带领下紧扣新课程标准和我校"自主--创新"的教学模式在有限的时间吃透教材分工撰写教案以组讨论定稿,学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中使学生的智慧、能力、情感、信念水乳交融心度受到震撼,心理得到满足,学生成了学习的主人学习成了他们的需求学中有发现学中有乐趣学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径,常思考常研究常总结,以科研促课改以创新求发展,进一步转变教育观念坚持"以人为本促进学生全面发展打好基础,培养学生创新能力",
以"自主--创新"课堂教学模式的研究与运用为重点努力实现教学高质量课堂高效率。
三、不断反思寻求备考的遗漏
我们把评价作为全面考察学生的学习状况激励学生的学习热情促进学生全面发展的手段,也作为教师反思和改进教学的有力手段除了认真讲解必考的知识点外我们还在教学之余不断反思,认真总结我们在教学中出现的问题尽量想出补救的方法和步骤为此我们分工合作将课本来了一次大扫荡把课本中的一些重要知识点进行再现通过试题的形式展现在每一位学生面前!尽量让学生以最短的时间获得最大的收益!将本着"勤学、善思、实干"的准则一如既往再接再厉把工作搞得更好。
高三数学知识点汇总归纳 篇16
第二部分函数与导数
1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;
⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
高三数学知识点汇总归纳 篇17
本学期开学以来,在校园创先争优活动的指引下,高三数学备课组8位教师教师结合本学期教学计划,认真学习校园的有关要求,认真履行备课组长与教师的职责,认真完成校园的各项工作,用心组织备课活动,加强学科的理论学习,使数学组成为团结和谐、勤奋、互助合作潜力较强的备课组。现将本学期工作总结如下:
一、教学常规方面
1、有计划的安排高三第二学期的教学工作计划。
新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划。在教学过程中,坚持间周一次的关于教学工作状况总结的备课组活动,发现状况,及时讨论及时解决。
2、集思广益,加强群众备课
高三数学备课组,做到了:每个教学环节、每个共案都能在讨论中确定;备课组间周一次大的活动,资料包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的最新动态、数学教学的改革与创新等。一般每次备课组活动都有专人主要负责发言,时间为两节课。经过精心的准备,每次的备课组活动都能解决一到几个相关的问题,各备课组成员的教学研究水平也在不知不觉中得到了提高。
3、严格落实教学常规,提高教学效益
按照校园的要求,用心认真地做好课前的备课资料的搜集工作,然后群众备课。每周一测,要求要有必须的知识覆盖面,有必须的难度和深度,由专人负责出题;每次月考的测验题,也由专人负责出题,兼顾各班的学生水平,并要到达必须的预期效果。
4、做好试卷命题,阅卷和质量分析,提出改善的.意见和措施。
备课组的精诚合作是取得成绩的关键,我们的备课组做事十分齐心。我们坚持群众备课。群众备课使我们对教材的认识到达统一,理解更深刻,时间安排一致。除了规定的时间群众备课外,我们还经常在一齐讨论,解决问题。其次,统一测试、统一复习资料。平时,备课组安排老师出单元资料、检测题,然后统一使用。在高考复习阶段,组长安排每个老师负责出各章节的复习资料、复习题,资料共享。
二、加强业务学习,建立团结和谐昂扬向上的群众
备课组共有x位教师,年青教师x位。中年青教师占百分之八十,但他们好学上进,业务素质高。本学期洪国清老师上了一节校级示范课,充分体现以学生为主体的教学模式,教学效果非常好,得到了听课老师一致好评。我们高三数学备课组组风正,教风好,是一支个性能吃苦,个性能战斗的团队,得到校园及年级组领导的一致好评。
三、今后工作的思考
1、学习:向大纲学习,向书本学习,向同行学习,理解新知识,改变旧观念,用心推行新课改;
2、推行新课改:提高课堂教学效率,真正实施教学重心前置;课堂上要做到重点的要精讲,难点要巧讲,该讲的讲到位,不该讲的直接不讲;
3、抓辅导,抓纠错,抓答疑:进一步利用周周练,适当的时间做好补差工作,关心爱护后进生,坚信让每个学生成功;提高错题集的使用工作,做到有错必纠,有批必评;缩小班级之间的差距;
最后,我们这个数学备课组力争在今年被评为校级优秀备课组,在新的学期,我们深知领导的要求,也深知学生家长的期盼,更深知自己的压力和职责,我们将把压力变为动力,更加努力,做到爱岗敬业,踏实工作,相信有领导的关心和帮忙,有我们组内教师的工作热情和干劲,我坚信我们已出色的完成了本届高三数学教学任务,本届学生的高考成绩也一定最优。
高三数学知识点汇总归纳 篇18
这一年的高三工作是辛苦的、忙碌的,但也是很有收获的。为了把这一届高三送好,为了使学生的数学成绩上一个新台阶,我和我们数学备课组全体老师群策群力也想了好多办法和措施,现将这一年来我们备课组做的工作总结以下,同时也把自己的一点想法说出来,与大家商讨。
第一部分:对本年度备课组工作的总结
一、团结协作,集体备课,发挥集体力量.高三数学备课组,在复习的内容、进度,在资料的征订、测试题的命题、改卷中发现的问题交流、学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有“学生容易错误”地方的交流,又有典型例子的讨论,既有课例的探讨又有信息的交流。在任何地方、任何时间都有我们探讨、争议、交流的声音。
二、掌握学情,做到有的放矢。深入学生中去了解学生的实际学习情况,学习水平和学习能力,在多次模拟测试中,及时调动教学内容,加大课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益。我们文科和理科同志,最大的优势就是能够开展分层次教学,使每一个层次的学生都能学有所获。
三、关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。我们5个老师,有3人兼任班主任,平常都非常注意学生的教育,结合教学进行恰到好处的启发诱导,不断的鼓励学生,让学生感到成功的快乐。
四、抓好“三中”,树立学习信心。抓好“三中”即中等题、中等分、中等生,对学生来说认真研究好中等题、拿好中等分是基本,是高考信心的保证;抓好中等生是全面提高教学质量的根本。我们的学生实际就是这样,我们必须实事求是,做太难的题,一个学生没有基础,做不了,打击了学生的自信;做太简单的题,又不符合高考要求,所以我们把中等题作为练习的重点。
五、注重“三点”,培养学习习惯。高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。我们的学生基础一般,所以,一点要根据学生实际,放低起点,把学习的内容分解为学生容易把握的一个又一个知识点,把步子迈的慢一点,通过练习,及时反馈,把学生一步一步推向前进。
六、“内临”“外界”,关注全体学生。认真分析数学临界内的临界生和临界外的临界生的学习数学的状态,采用分层管理和分层教学。比如说每次测试都能在前10名分以内的同学,应给他们以自由度,课后可做一些适合自己的题目。对一些优秀学生,我们采用了科组集体力量加强提高辅导,激起学生的竞争意识,增强有效性;对一些数学“学困生”,采用了低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。尤其在考前,我们对优等生和数学“学困生”,利用自己的休息时间,个别辅导,或交换老师辅导,有的放矢,收到了较好的效果。
七、心理教育,助长学习成绩。学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我们采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。
第二部分:对后期高三的几点建议
一、一轮复习应细,但时间不宜太长。作为数学科的教学,第一轮复习知识、方法、题型要全面一些,不仅求数量,更重要的是求质量,是实实在在的学会。例如例题分析,就不能只有老师讲,要给学生思考时间,最好学生先做一做,做5-10分钟再讲,老师在讲时要动员学生参与,领着学生读题、分析、板书、归纳,不能放过影响成绩的任何一个细节。让学生实实在在的体会综合题是怎样入题的,怎么样书写的,得分要点是什么,又包含哪些规律与数学思想方法,特别是数学思想方法,作专题讲是没有多大用的,高考又要考,所以平时要渗透到每一个试题中去。虽然一轮复习要细,但战线不可拉的过长,这样容易造成复习到后面忘了前面的内容。文科我认为至少在春节前结束一轮复习,理科也要在寒假补课后结束一轮。
二、二轮应按知识或题型为模块复习。往届的二轮复习大部分时间和精力放在思想和方法上,常常是老师讲的有条有理,头头是道,学生也能听懂,但往往与应用结合不到一块,见不到实质性效果。所以二轮复习应结合学生的实际情况和考试大纲,有针对性的进行题型训练,从这一届的情况看效果还是不错的。
三、充分利用好周练,做好巩固和检测工作。周练各个年级都有,但高三的周练应有别于高一高二,高一高二处于学习新知识的阶段,周练的内容当然应以近段学习的知识为主要对象。而高三处于对学过的知识进行复习和提高的阶段,所以高三的数学周练最好小题应出复习过,解答题应有两道高考常考的而还没有复习的题型。通过这种形式也可以了解学生的不足,以便在下面的复习过程中有的放失。
四、“重读”考卷,在纠错训练中提升能力。在平时的教学和阅卷后,我们感到提高学生数学成绩的主要障碍有以下几个方面:①双基不扎实,认知结构不完善:基础知识、基本技能掌握不扎实,常用公式记不准确,造成了不应该的失分。②思维欠缜密,缺少书面表达的主要环节:对于含字母的问题,对字母的分类讨论不够到位。③综合水平欠佳,运算能力薄弱,做题时往往是“会而不对”。我认为应从“错题”入手,争取实现能力超越。由于错误常具有“重复性”,一般学生在过去的练习中已暴露了他们解题中可能出现的问题。如果我们在综合复习阶段,收集了部分学生的“纠错本”,对他们曾经出现的错误进行了整理、归类,编写小题训练试题发给学生练习并进行讲解,就可以使学生的解题错误得到了纠正,实现了数学解题能力的超越。
五、精选试题,做到“张弛”有度。高三学生要做很多试题,但学生的时间是有限的。如何解决二者之间的矛盾,老师做的工作是非常关键的。任何一套试题发到学生手里之前,我认为老师都应现做一遍,最好是试题的难度和所考察的知识点有第一手材料。不能不管三七二十一,先把试卷发下去,难了不讲或把答案贴出去了事。另外,适当做一些综合卷要注意的是:1.限时完成,没有限时,应试能力就很难培养上去;2.不要放过有难度的题,没有一定的难度的训练,学生的心理承受能力和学生思维的全面性、深刻性是无法培养上去;3.通过做综合题,学生应自觉寻找成绩的提高点,采取切实可行的措施解决,如某一章节的内容不到位,应及时巩固。只有做到学生做的都是精选试题,才能“张弛”有度。
第三部分:一点想法
一、高三应有校本课程。编写高三复习教材就是做学问,有一些事情需要解决,一章中有哪些知识,有哪些题型,有哪些方法,如何渗透数学思想;哪些内容是重点,哪些内容是热点,哪些内容是难点,这些内容如何安排才能更好的突破;章与章之间有没有重复,知识是否到位,表达是否准确,题目与解答甚至标点符号是否有错误;第一轮与第二轮如何联系等等.我认为开始阶段我们可以选择一本适合我们学生的书作为“母本”,添加进我们自己的一些东西,经过几年的运作,就有了具有我们自己特色的校本课程了。
二、月考应是自己命制的试题。命制试题也是做学问的一种.在命制一套试题时,我们首先要做的是安排好内容与难度,内容选择与难度控制是一次考试是否能达到目标的关键.其次在一套试题中,我们还应有一些自己的东西,至少有一两个是自己原创的新题,虽然全部题目自己原创是不太现实的,因为教师没那么多精力,但是没有自己东西的试卷是没有新意的,没有创新意识的教师是培养不出有创新意识的学生的,不管教材怎么改变.目前,有的老师工作了七八个年头,还单独不能完成一套试题的命制工作,所以这对教师的成长也是有利的。
三、加强任课教师对班级的管理。一个班级的管理的好与坏,班主任的工作固然是很重
要的,但对一个班级的管理,只靠班主任一人是不够,任课老师应负起责任来。最起码要管理好自己的课堂,完成好自己的教学任务,不能有事就找班主任,或只讲课不管理。若是这样的话,班主任的工作就不那么好做了。
高三数学知识点汇总归纳 篇19
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
高三数学知识点汇总归纳 篇20
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
任一x?A,x?B,记做AB
AB,BAA=B
AB={x|x?A,且x?B}
AB={x|x?A,或x?B}
Card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性;②互异性;③无序性
2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n-1;
非空真子集数:2n-2
高三数学知识点汇总归纳 篇21
一、努力提高课的质量,追求复习的最大效益
1、认真学习新课改的考试说明和考试纲要,严格执行课程计划,确保教学进度的严肃性、高三年级在明确学期教学计划的基础上,本学期以来经常进行备课组群众备课,教学案一体化,将长计划和短安排有机结合,既体现了学期教学的连贯性,又体现了阶段教学的灵活性。
2、准确定位复习难度,提高课堂复习的针对性。我们把临界生这个群体作为高考复习的主要对象,根据临界生的知识结构,潜力层次来设计课堂教学,不片面地追求"高,难,尖",而是在夯实基础的前提下,逐步提高潜力要求,从而突出重点,突破难点。
3、不断优化课堂结构,力促课堂质量的有效性。首先,针对复习课特点,明确复习思路,构建了二轮复习"四合一"的课堂模式:潜力训练+试卷讲评+整理消化+纠错巩固。潜力训练做到在一轮复习的基础上,排查出学生的考点缺陷,有针对性地进行强化训练;试卷讲评做到在错误率统计和错误原因分析的基础上进行讲评,讲评的对象明确定位为中转优学生,评讲效果的衡量标准就是看中转优学生有没有真正搞懂;整理消化首先确保各学科当堂消化的时间;错误率较高的题目在必须的时间长度内,以变形的形式进行纠错巩固训练,同时在周练中予以体现、
二、让学生切实做好题,发挥训练的最大功能
1、实行"下水上岸"制,提高练习质量。"下水"是为了"上岸",教师做题是为了选题。为此,本人对给学生做的题目自己先过一遍,加强对选题的工作,练习材料没有照搬现成资料,同时整个年段的题目是备课组群众研讨而成;要先改造,后使用,力求做到选题精当,贴合学情。
2、有效监控训练过程,确保训练效度、训练上个性重视训练的计划性,明确每周训练计划、认真统计分析,对于重点学生更是面批到位、指导学生进行自我纠错,并定期进行纠错训练、此外,对考试这一环节,严格考试流程,狠抓考风考纪,重视考试心理的调适,答题规范化的指导和应试技能的培养,努力消除非智力因素失分。及时认真地做好每次考试的质量分析,并使分析结果迅速,直接地指导后面的复习工作。
3、强化基础过关,实施分层推进、针对学生基础相对薄弱的现状,实施基础题过关的方法,在夯实基础的前提下,实验班适当提升训练难度,同时实行必做题和选做题的分档训练。这一举措对学生成绩的提高取得了良好的效果。
还有很多做得不够的地方,我必须持续谦虚谨慎,戒骄戒躁的作风,在今后的工作中扬长避短,不断进步,不辜负领导和家长们对我的信任,在来年再创佳绩。
高三数学知识点汇总归纳 篇22
时间过得真快,一眨眼一年一度的高考离我们已过去这么多天了,迎来的又将是20xx届学生的高考复习,回顾过去的一年,我们舞钢一高高三文科在高考中取得了一定的成绩,但更重要的是如何在原有的基础上得到进一步的提高,使我们的数学成绩在明年高考中能更加辉煌,更加灿烂。在展望的同时必须做好总结与反思工作,以下是我在20xx届高考复习中的几点真实做法和总结,仅供老师们指正。
一、复习安排:
我校高考复习目前只能分两轮进行(时间有点紧),第一轮是按复习用书的安排,复习高考主干的基础知识,而且复习一定要到位。复习时一定注意理清知识结构,注重方法与思路的指导,给学生有比较明确的数学框架与解题方向,千万不要含糊不清,马虎从之,这一轮将是致命的,应引起高考重视。第二轮是专题复习,专题复习目标要清晰,主题要明确,选题要精辟,练习要对应精选。在第二轮复习时一定要注重解题方法的指导与灵活应用,选题一定要新颖,有代表性,提高学生的应变能力与适应能力。复习同时穿插综合试卷的训练与分析,提高学生的应试能力。
二、合理应用复习用书:
复习用书是高考第一轮复习的灵魂,那么如何合理地应用复习用书是关键。知识点的梳理与拓宽对文科学生来说一定要重视,而且要重点讲,解决主干知识的方法要归类到位,这样可以在例题讲解时让学生活学活用对应的知识与方法。教师自身只要适当引导就可以了,而且要注意不要把复习用书中的每道例题都照抄照搬地讲,不加筛选,不加改变地讲,这样会让学生对你的课失去兴趣,感觉枯燥乏味,从而降低课堂效率,影响复习课。
三、认真对待“五认真”:
作为一个教师,备课、上课与批改作业是非常重要的环节。备课要备出自己的思想,不要抄其他书籍。上课要上出激情,要有应变能力,要和学生的思想,思维变化迅速融合在一起,进而发展上课进程。批改作业要认真,批改后的统计工作要到位,千万不要少了这个环节,这样能使老师分析问题时重点突出,详略得当,提高分析问题的质量与效率。
四、认真做好积累工作:
在高考复习中“积累”是一项重要的工作,我们作为一个备课组要分工合作,要统一复习资料,分块进行资料搜索与整理,在相同的资料中整理出学生的错题与薄弱的知识点,同时在网上或其它资料上寻找一些新颖题,在第二轮复习时可以给学生查漏补缺,自我反省的机会,同时有进一步提高自己适应新题的能力,这样能使学生在第二轮复习时更好地提高自己。
五、要重视“考试说明”及“考纲”:
我们作为教师重点当然是教书,但如何教书应是一个值得我们反思的一个话题,教师在教书时应该注重“考试说明”及“考纲”的有关说明,一定要做到主干知识重点讲,主要知识要突出其地位,千万不要讲那些已经被删除了的或处于非常边缘的知识,这样既给学生增加压力,又达不到教学目标,是一件非常遗憾的事情。同时要重视每年的高考样卷,他有非常重要的指导作用。
六、要重视学生的解题速度:
高考的竞争很大程度上是学生掌握的数学知识及应用能力的竞争,但同时也是学生解题速度的竞争。如何提高学生的解题速度,训练学生的反应能力也是摆在教师面前的一个问题,各个阶段有意识地去控制学生完成作业的时间,引导学生合理分配考试时间,这两个做法是提高解题速度的两条有效途径。
七、要重视“优等生”的培养:
每个学校都有“优等生”,那么如何培养“数学优等生”是我们数学老师的责任,培养“优等生”我注重两点:一是给这些学生口头上的鼓励,要他们树立对数学的信心。二是给这些学生以行动上的鼓励,给你的“目标”另外做一些难题,提高学生解决中难题的能力,同时给他们以信心上的提升。同时要有效地利用这些有效的“优等生”资源,让他们来发挥真正的作用,让他们来带动整个班级的数学学习氛围,让他们来引领一些“中差生”对数学的兴趣,这样可以提高整个班级的数学成绩。
一年来经过认真、踏实有效的复习我校学生在高考中也取得了一定的成绩,但通过成绩也折射出了我们教学中的还存在一定问题和不足之处!我简单总结如下:
一、文科学生的数学知识基础、数学思维和学习能力都比较差,他们大多是因为理科差采选择文科的。
二、本届学生文科学艺术学生逐渐增多,当然这对学校来说不是什么坏事,但艺术生
和普通考生同坐一个班,普通考生思想上有点动摇:看到他们文化课那么差居然很有希望上好学校,蛊惑学生的思想,并且一般情况下这些学生学习态度也不增么端正!很可能对普通生有一定的影响。
三、有一批高一、高二数学成绩较好的学生进入高三以来进行综合测试训练的成绩不理想,有的甚至很差,究其原因,学了的东西容易忘记,对知识进行简单的运用还可以,只要综合起来运用就束手无策,这些学生只掌握点点滴滴的知识,不能将掌握的知识,串成线,连成片。
四、几乎所有的学生都存在会做的做不对的毛病每次考试结束后,几乎所有的学生都要叹息,这次考试哪些题我只要认真一点,我都能解答正确,不会做的得不了分,这没什么遗叹,会做的总做不对,太感叹了。造成这一现象,究其原因。
1、没有审题题意,只是将题匆匆扫一眼,看到了片言只语,就匆匆下笔做做题。这些人总是担心,若将题意仔细搞清楚,弄明白会耽误时间,影响做题的速度。其实这样做,只会耽误更多的时间,造成更大的损失,题目没看清就下笔,会出现做到中途做不下去的情况,然后再回过头再看题目时,就会发现其中有些关键性语句没看到,
2、在解答过程中有些同学养成了只用眼睛看,不肯动笔的坏习惯,即使动笔,也是偷工减料省略一些关键性的步骤。从而出错,
3、注意力不稳定容易得意忘形,有些学生在草稿纸上明明得出了正确的答案,但填写到答卷上却出错了,这主要是这些学生在草稿纸上演算时能专心至致,获得了正确的结果,就放松了,注意力分散,从而造成了错误。
五、对平时的训练,月考认识不正确。
1、认为考试是老师已折磨学生。
2、对自己缺乏正确的认识和定位每次考试都希望自己能将所有的题做完,都能获得较高的分数,只要有几个做起来不顺手或一时解答不出,就非常焦急,烦燥不安,心慌意乱,从而出现思维混乱,反应迟钝,即便是简单的题也做不起。
3、对做题、考试的目的不明确,每次做题只追求是否正确,做对了就很高兴,越做越有兴趣,做不起,做不对,心里就很烦燥,不愿再继续做下去,每次考试老师发下试卷后只注意分数,而不注意分析错误的原因,不善归纳、总结、反思。
4、缺乏恒心和毅力。在训练中碰到稍难一点的题不愿进行深入的思考,特别是碰到文字叙述较长的题好应用题,正好学生自己所说的,看到文字叙述较长的.题我头都大了,连看都不想看,别说想和做了。
六、阅读理解能力差,进入高三来,我们已做了许多个应用题的训练题,每次这些应用题能动笔不多,能做对更是凤毛麟角,究其原因题目意思看不懂。
七、不会听课,不会做笔记,不会及时复习巩固,消化当天的知识。不能掌握概念的本质属性,导致思维的表面性,忽视定理、公式和法则成立的条件,导致定势思维的消极性,发散思维意识淡薄,观察力,联想能力差,数学应用意识淡薄,数学建模能力差。
八、学生心理素质普遍较差,存在严重的心理问题,学上选择文科的原因一定因素上是因为数学学不会,这样一来看到数学具有一定恐惧感!但是对于文科班渐漏出来个别“优等生”对自己定位不够,幻想自己的数学就是最好的,过高的估计自己!这样以来在高考中跌了脚!
高三数学知识点汇总归纳 篇23
在学校领导、高三年级组的领导下,20xx届高三复习顺利结束了。高三数学备课组按照学校,年级制定的复习备考计划进行实施,并适时地加以充实和完善,全体高三数学老师同心协力,并积极进行教学改革,悉心研讨和努力实践,调动学生复习主动性,充分发挥学生的主体作用,经过实验,效果良好,复习效率和质量也大大提高。使今年我校高考数学成绩再上新台阶。成绩的取得,源于各方面的因素,现总结如下:
一、系统、扎实、科学、创新的复习备考
1、研讨考纲,分析考点,设置梯度。高三数学备课组组织教师研讨高考考试说明,明确各章节知识的考点分布及其要求层次,在复习过程中根据我校学生的基础和智力现状,狠抓对基础知识的复习,再结合知识本身的重点、难点,设置好复习题的梯度和难度。做到有的放矢,尽可能减少无效劳动。
2、团结协作,发挥特长。备课组坚持集体备课,精心设计复习教学方案,统一教学目标、要求及复习的大致进度,理清各章节内容的知识网络及其交汇点(因高考常在知识网络交汇点上命题),准确把握各复习内容的重点和难点,疑难问题集体讨论,老师们各抒己见,找出最佳解决办法,充分发挥了备课组的集体智慧。
3、回归课本,狠抓基础,开拓创新。备课组以课本知识点为出发点,狠抓对“三基”的落实,并选好一本主干复习资料和套题,(第一阶段用《名师一号》),但又不过分依赖复习资料,对资料中过时、过偏、过难的内容,我们进行了大胆舍弃,同时,教师把富有新意、能启迪思维、体现重要数学思想方法、反映时代气息的习题及时补充进去,另外,老师自己也改编了一些题,重视单元小综合,适当自编或改编知识网络交汇点上的题目,这些自编题、自造题的应用,对于培养学生的发散思维,使学生们加深对各部分知识的内在联系的认识,因而从中感悟出数学的真谛,最终收到了相当好的效果。
4、拓宽课堂教学渠道,全面提高学生能力。课堂教学是提高教学质量的关键环节,因此,在如何提高课堂复习效率和复习质量方面,几个老师都作了积极的探索和试验,进行了大胆教学改革。在教学中我们注意发挥教师的主导作用和创新意识,在传授知识的同时,指导学法,发展智力,培养能力,并适时地渗透重要的数学思想方法。教学中着力体现学生的主体作用,努力提高学生的主动参与意识,激发他们积极思维,挖掘其潜能和非智力因素,使他们养成独立思考、勇于探索、善于反思、勤于积累、不断创新的好习惯。大家都认识到,只有把学生的学习积极性充分调动起来了,养成了良好的学习习惯和思维品质,高考复习的质量才有保证。因为内因是决定因素,外因必须通过内因才能起作用。
5、滚动测练、螺旋式上升。高三数学备课组全体老师,分工轮流做好数学每周一练、单元过关测验、综合训练题、模拟考试试题的命题和制卷工作,把好质量关。通过滚动练习、限时训练和模拟考试使学生逐步增强速度意识、质量意识,提高了学生的运算能力、逻辑思维能力、空间想象能力和综合运用知识的能力,为高考作了较充分的`准备。
6、互听互学,扬长避短。为提高复习质量,备课组老师之间经常相互听课。通过听课,相互学习,取他人之长,补己之短。提高了教学水平和复习效果。
7、勤字为首,真情感化。晚自习下班辅导工作抓得紧,做到常下班、常辅导,不仅辅导本学科知识,还有针对性地找学生谈心,勾通了思想,联络了感情,也消除他们的心理障碍。指导答题技巧,以及如何调整好心理状态,做到轻装上阵。
8、认真反馈,不断改进。做好本备课组教学情况的收集、反馈工作,各个老师自觉根据各班教学情况进行了学生评教活动,对帮助科任教师改进不足之处,提高教学水平起到了一定的促进作用。
9、培养“尖子”、激励“差生”。做好单科尖子学生的培养和鼓励工作,各科任教师根据几次模拟考试成绩确定出各班尖子生名单,及时找他们谈心,并加以指导和鼓励。根据一学年的跟踪,大部分尖子的成绩较稳定。同时也主动配合级组、班级抓好临界生、“差生”的辅导工作。
二、高三数学备课组浓厚的高考研究气氛
随着高考的改革力度的加大,高考更加突出对各种数学能力与素质、潜能的考查,因此,要提高高考成绩,必须走教科研之路。
1、集体研讨,团结攻坚。成立高考核心备课小组,更充分发挥高考核心备课组的作用。高考核心备课小组重点对近几年来的高考试题进行了深入的研究和探讨。并为我们献计献策,使我们的高考备考少走了弯路,复习更具有针对性。
2、中心开花,备课组每周组织一次集研活动,设置中心问题,每个教师畅所欲言,然后各个击破。由于高考是高三全年的攻坚战,因此备课组的活动始终围绕高考备考这个中心进行。
3、促使学生突变,创设突变机遇。我们认为:学生在第二轮和第三轮复习是数学成绩提高的良好阶段,为此,我们组织老师精心编拟了8个专题,教师在这两轮复习的课堂教学是帮助学生“归纳—提高”的导航。因此,我们认真做好第二、三轮复习的研讨工作,由刘宁,胡学敏老师分别承担了的第二、三轮高考复习研讨观摩课,准备充分,具有观摩性和示范性,为学生知识归类提高设置了明确的航标。并且认真研究外来综合试卷,精心编组,精心删减。取舍,宁可老师多吃点苦,也不让学生多走一步弯路,具有科学性!
4、采集信息,科学巧干。备课组注意采集各地高考备考及高考命题方面信息,通过去伪存真,及时加工,科学地复习提高,为高考赢得时间,也做到有的放矢。 总之,学校行政、高三级组的正确领导,有全提高三数学老师的勤奋工作,还有其他老师的大力支持和学生的奋力拼搏,才使我校今年数学高考成绩再上新台阶,再创新辉煌。尽管今年我们取得了较好的成绩,积累了一些成功经验,但仍有许多不足和遗憾:
1)各班学生成绩参差不齐,这给我们在教学上带来一定的困难,例如,到底应该以哪一层学生为主攻对象更合适、更科学?因为现在录取率这么高,怕甩掉了不该甩的学生,同时若只照顾优生,差生也有意见,真是左右为难。
2)对差生的培养措施和力度还不够。
3)对差生的学习积极性还没有完全调动起来,对其非智力因素挖掘得不够,练习还不够到位,没有形成应有的能力,故这部分学生的高考成绩不够理想。
4)老师有时讲得过多,包得过多的教法还需进一步改进。
高三数学知识点汇总归纳 篇24
高考数学必考知识点归纳必修一:
1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
高考数学必考知识点归纳必修二:
1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程
高考数学必考知识点归纳必修三:
1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:
1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:
1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考数学必考知识点归纳文科选修:
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:
1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
高考数学必考知识点归纳理科选修:
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分(一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
高三数学知识点汇总归纳 篇25
高中数学组
本学期我担任高三理科(5)、文科(7)两个班的数学教学工作,经过一个学期的努力,两个班在前几次月考中都取得了比较好的成绩。高三的学习是紧张的,一学期的时光过得很快,回顾这一学期的工作,我主要从以下几个方面对本学期教学工作情况作如下总结:
1、备课:研读考纲,梳理知识。 根据课标要求,提前备好课,写好教案。备课时认真钻研教材、教参,学习好大纲,虚心向同年组老师学习、请教。力求吃透教材,找准重点、难点。积极参加教研室组织的教研活动,老教师的指导和帮助下进行集体备课,仔细听,认真记,领会精神实质。
2、上课 :重视课本,狠抓基础,构建学生的良好知识结构和认知结构。 上好课的前提是做好课前准备。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。课间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。
3、辅导 :精心选题,针对性讲评。
我利用课余时间对学生进行辅导,不明白的耐心讲解,教给他们好的记忆方法,好的学习习惯,做到对所学知识巩固复习,及时查缺补漏。 1
4、作业 :狠抓常规,强化落实与检查。
5、认真布置、批改作业。在教学中布置作业要有层次性,针对性。并认真批改作业,做到有质量全批,在作业过程出现不同问题及时作出分类总结并记载下来,课前分析讲解。并针对有关情况及时改进教学方法,做到有的放矢。由于高三的课业负担较重,我只布置适量作业,利用好订的学案,且作业总是经过精心地挑选,适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。
6、爱就是了解。对尖子生时时关注,不断鼓励。对学习上有困难的学生,更要多给一点热爱、多一点鼓励、多一点微笑。尊重学生的人格,关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。面向全体学生,进一步要求班主任加强家校联系。我们打破了过去只等到学生犯错后才和学生家长联系的情况,我要求班主任经常与学生家长联系,即时了解学生的家庭情况,同时也把学生在校的情况反馈给学生家长,特别是那些学困生。对于个别学生还请家长到学校来协助教育。以上措施的实行已见成效,获得社会家长的好评。
7、个人学习:充分发挥集体备课的优势,积极学习其他教师的各种教育理论,以充实自己,以便在工作中以坚实的理论作为指导,更好地进行教育教学。坚持每周集体备课,认真听课,探讨课堂优化教学,有时探讨专题,群策群力,并主要做法:1、 每周每位教师轮流出一套滚动试题;2、 每周至少小测一次;3、 每月或每单元大测一次;4、每次月考组织高三综合 2测评一次;5、总结,反思。
以上是我这学期的工作总结,还有很多需要完善和改进的地方,我将继续努力,虚心求教,争取下学期取得更圆满的成绩。
3
高三数学知识点汇总归纳 篇26
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,则有>1?;=1?;<1?.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b?;
(2)传递性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可开方:a>b>0?(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:<;>(b-m>0);
②假分数的性质:>;<(b-m>0).
高三数学知识点汇总归纳 篇27
高三数学总复习既要立足于巩固所学的基础知识、掌握基本方法和技能,又要着眼于提高能力、深化思维;既要在复习中学全题型,又要避免“题海战术”,因此复习的质量直接关系到高考的成败。以下是的高三数学复习计划。
一、指导思想:
高三复习应根据本校学生的实际,立足基础,构建知识网络,形成完整的知识体系。要面向低、中档题抓训练,提高学生运用知识的能力,要突出抓思维教学,强化数学思想的运用,要研究高考题,分析相应的应试对策,更新复习理念,优化复习过程,提高复习效益。
二、复习进度:
按教研室下发的计划为准,结合本校实际,一轮在2月底3月初完成。材料以教研室下发材料为主,进行集体备课,难题删去。
每章进行一次单元过关考试和一次满分答卷,统考前进行一次模拟考试练习。
三、复习措施:
1、 抓住课堂,提高复习效益。
首先要加强集体研究,认真备课。集体备课要做到:“一结合两发挥”。一结合就是集体备课和个人备课相结合,集体讨论,同时要发挥每个教师的特长和优势,互相补充、完善。两发挥就是,充分发挥备课组长和业务骨干的作用,充分发挥集体的智慧和优势、集思广益。
集体备课的内容:备计划、课时的划分、备教学的起点、重点、难点、交汇点、疑点,备习题、高考题的选用、备学情和学生的阶段性心理表现等。
其次精选习题,注重综合 。复习中要选“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。选有一定的代表性、层次性和变式性的题目取训练学生综合分析问题的能力。
再次上好复习课和讲评课。复习课,既讲题也讲法,注重知识的梳理,形成条理、系统的结构框架,章节过后学生头脑中要清晰。要讲知识的重、难点和学生容易错的地方,要引导学生对知识横向推广,纵向申。复习不等于重复也不等于单纯的解题,应温故知新,温故求新,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程 ,甚至是学生在解题中的失败的教训和走过的弯路。功夫花在如何提高学生的分析问题和解决问题的能力上
讲评课要紧紧的抓住典型的题目讲评,凡是出错率高的题目必须讲,必须再练习。讲解时要注意从学生出错的根源上剖析透彻 ,彻底根治。要做到:重点讲评、纠错讲评和辩论式讲评相结合,或者让学生讲题,给学生排疑解难,帮助学生获得成功。
2、畅通反馈渠道,了解学生
通过课堂提问、学生讨论交流、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。
3、复习要稳扎稳打,注重反思
数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结 。反思总结解题过程的俄 来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循5;反思总结此题还有无其它解法,养成多角度多方位的思维习惯;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。
注意心理调节和应试技巧的训练,应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。
4、强化数学思想方法的渗透,提高学生的解题能力
在复习中要加强数学思想方法的复习,特别要研究解题中常用的思想方法:函数和方程的思想、数形结合思想、分类讨论思想、转化和化归的思想,还有极限的思想和运动变化的思想,而采用的方法有:换元法、待定系数法、判别式法、割补法等,逻辑分析法有分析法、综合法、数学归纳法和反证法等。对于这些数学思想和方法要在平日的教学中,,结合具体的题目和具体的章节 ,有意识的、恰当的进行渗透学习和领会,要让学生逐个的掌握他们的本质的特征和运用的基本的程序,做到灵活的运用和使用数学思想和方法去解决问题。复习中注重揭示思想方法在知识互相联系、互相沟通中的纽带作用。
高三数学知识点汇总归纳 篇28
(1)先看“充分条件和必要条件”
当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q
回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
高三数学知识点汇总归纳 篇29
这学期我担任高三年理科班(3)(4)两班的数学教学工作,这是我工作以来第一次任教高三年级,没有经验,在这一半学期的时间里,我深知肩上的责任,一直以来我努力的工作经常向老教师学习。新的高考形势下,高三数学怎么去教,学生怎么去学?工作起来感到压力很大。现对本学期教学工作总结如下:
一、研读考纲,梳理知识
研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也为复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样就能明了知识系统的全貌,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而理科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。
二、立足课本夯实基础
高考复习,立足课本,夯实基础.复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩.
三、优化练习提高练习的有效性
知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的.练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因.练习的讲评是高三数学教学的一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性.多做限时练习,有效的提高了学生的应试能力.
四、不同学生不同要求
高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而理科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。
五、关注全体学生。
学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。
高三数学知识点汇总归纳 篇30
等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)a>bb
(2)a>b,b>ca>c(传递性)
(3)a>ba+c>b+c(c∈R)
(4)c>0时,a>bac>bc
cbac
运算性质有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高中数学集合复习知识点
任一A,B,记做AB
AB,BA ,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性;②互异性;③无序性
2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n-1;
非空真子集数:2n-2
高中数学集合知识点归纳
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:
元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。
3、集合中元素的特性
(1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
4、集合的分类
集合科根据他含有的元素个数的多少分为两类:
有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。
特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。
5、特定的集合的表示
为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。
(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。
(3)全体整数的集合通常简称为整数集Z。
(4)全体有理数的集合通常简称为有理数集,记做Q。
(5)全体实数的集合通常简称为实数集,记做R。
高三数学知识点汇总归纳 篇31
三角函数
注意归一公式、诱导公式的正确性
数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;
高三数学知识点汇总归纳 篇32
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3