热门标签最近更新文档搜索存到桌面欢迎您访问好范文,请记住我们的网址 www.hfanwen.com

当前位置:首页 > 实用文档 > 内容页

《倍数和因数》教学反思13篇 倍数和因数单元教学反思

分类:实用文档发表于 2023-07-29 14:54阅读数:0

在平时的工作学习中,我们总少不了进行实用文档写作的机会,想写好实用文档类型的文章,不妨来参考一下本文。好范文为大家带来了《《倍数和因数》教学反思13篇 倍数和因数单元教学反思》,希望对你的范文写作有所帮助。

下面是好范文小编分享的《倍数和因数》教学反思13篇 倍数和因数单元教学反思,供大家参考。

《倍数和因数》教学反思1

在上学期的白纸备课活动中,我们高年段数学抽到的教学内容就是因数与倍数,这个内容是我没有教过的,在看到教学内容时,我心里不禁在打鼓,我能找准教学重难点吗?能突破重难点吗?一连串问题涌了上来,最后我还是让自己冷静下来,静下心来认真分析教材,尽自己最大的努力梳理出教学重难点,创设情境、设计游戏来突出重点、突破难点。在设计完教学过程后,我也与同组的老师交流了活动体会。原来在老教材中没有因数这个概念,只有约数和倍数,而且是由整除的概念引入的,但因为我是第一次教学这个内容,很自然的就没有被以往教材的教学定式所束缚,尝到了新教材的甜头。现在刚好又教了这个内容,仔细参考了教学用书我才真正领悟到了新教材的新颖所在。

新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基础上再引出因数和倍数的概念。实际上,由于乘除法本身就存在着互逆关系,用乘法算式(如b=na)同样可以表示整除的含义。因此,新教材中没有用数学化的语言给“整除”下定义,而是利用一个简单的.实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,学生不必通过12÷2=6得出12能被2整除,进而2是12的因数,12是2的倍数。再通过12÷6=2得出12能被6整除,进而6是12的因数,12是6的倍数,大大简化了叙述和记忆的过程。在这儿,用一个乘法算式2×6=12可以同时说明“2和6都是12的因数,12是2的倍数,也是6的倍数。”

这样的设计既减轻了学生的学习负担又让学生在学习时尽量避免出现概念混淆、理解困难的问题。学生对新知掌握较牢,在实际教学中我就是这样处理的,学生乐学,思路清晰。

《倍数和因数》教学反思2

一、教材与知识点的对比与区别。

1、对比新版教材知识设置与传统教材的区别。

有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:

(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

(2)“约数”一词被“因数”所取代。

这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:

学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。

2、相似概念的对比。

(1)彼“因数”非此“因数”。

在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。

(2)“倍数”与“倍”的区别。

“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。

二、教法的运用实践

1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。

2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。

《倍数和因数》教学反思3

因数和倍数是五年级下册第二单元的教学内容,由于知识较为抽象,学生不易理解,因此我在教学时做到了以下几点:

(1)密切联系生活中的数学,帮助学生理解概念间的关系。

今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的关系,

(2)改动呈现倍数和因数概念的方式。我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

(3)根据学生的实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。

(4)设计有趣游戏活动,扩大学生思维的空间,培养学生发散思维的能力。譬如“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。我手里拿了5、17、38几张数字卡片,让学生判断自己的学号数是哪些数的倍数,是哪些数的因数,如果学生的学号数是老师出示卡片的倍数或因数就可以站起来。最后问能不能想个办法让所有的学生都站起来。出示地卡片应该是几,找的朋友应该是倍数还是因数?学生面对问题积极思考,享受了数学思维的快乐。

《倍数和因数》教学反思4

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

《倍数和因数》教学反思5

本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。

今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,我还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。

找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。

《倍数和因数》教学反思6

去年教学《公倍数和公因数》这一单元时,依照学生预习、阅读课本进行教学,老师没有作过多的讲解,从学生的练习反馈中,部分学生求两个数的最大公因数和最小公倍数错误百出,反思教学后,觉得用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的最大公因数有学生写5。……调查询问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“太麻烦了”。

  今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进:

一、仍然是将预习前置。

二、动手操作,想象延伸。

让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。

用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

学生分组操作,用除法算式把不同的摆法写出来。

提问:通过刚才的活动,你们发现了什么?

以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。

思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。

四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。

  课后反思:

一、预习后的课堂教学,还要教,直接放手要出问题。

二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。

三、应逐步鼓励学生把求最大公因数和最小公倍数过程想在脑中,直接说出结果。引导感兴趣的同学在课后探索其它的求最大公因数和最小公倍数的内容,适当提高学生的思维水平。

《倍数和因数》教学反思7

  一、教材与知识点的对比与区别。

1、对比新版教材知识设置与传统教材的区别。有关数论的这部分知识是传统教学内容但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别1新课标教材不再提“整除”的概念也不再是从除法算式的观察中引入本单元的学习而是反其道而行之通过乘法算式来导入新知。2“约数”一词被“因数”所取代。这样的变化原因何在教师必须要认真研读教材深入了解编者意图才能够正确、灵活驾驭教材。因此我通过学习教参了解到以下信息学生的原有知识基础是在已经能够区分整除与余数除法对整除的含义有比较清楚的认识不出现整除的定义并不会对学生理解其他概念产生任何影响。因此本教材中删去了“整除”的数学化定义。

2、相似概念的对比。1彼“因数”非此“因数”。在同一个乘法算式中两者都是指乘号两边的整数但前者是相对于“积”而言的与“乘数”同义可以是小数。而后者是相对于“倍数”而言的与以前所说的“约数”同义说“X是X的因数”时两者都只能是整数。2“倍数”与“倍”的区别。“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时运用的方法与“求一个数的几倍是多少”是相同的只是这里的“几倍”都是指整数倍。

  二、教法的运用实践

1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围因此对于学生和第一接触的印象是没有什么可以探究和探索的要求而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内与小数无关与分数无关与负数无关虽没学但有小部分学生了解。同时强调——非0——因为0乘任何数得00除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法让学生清晰明确。因此用直接导入法先复习自然数的概念再写出乘法算式3×4=12说明在这个算式中3和4是12的因数12是3和4的倍数。

2、在进行延续性教学中可以让学生探究怎么样找一个数的因数和倍数在板书要讲究一个格式与对称性这样在对学生发现倍数与因数个数的有限与无限的对比再就是发现一个数的因数的最小因数是1最大因数是其本身。

《倍数和因数》教学反思8

开学后上第一节课年级组教研课,挺有压力的。毕竟放了这么久的假,感觉有点不习惯,好象字都写不稳一样。还好,上完课后感觉还可以。

因数和倍数是一堂概念课。老教材是先建立整除的概念,在整除的基础上教学因数与倍数的,而新教材没有提到整除。教学前,我是先让学生进行了预习,开课伊始,就揭示课题,让学生谈自己对因数与倍数的理解。学生结合一个乘法算“3×4=12”入手,介绍因数与倍数概念,这样有助于更好理解,也能节约很多时间。学生的学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。

能不重复、不遗漏找出一个数的因数是本课的难点,绝大部分学生都能仿照找12的因数去找,孩子都能一对一对的找,可遗漏的多,在这里我强调按顺序找,也就是从“1”开始,依次找,这样效果很好。

为了得出因数的特点,我出了“24的因数,36的因数,18的因数”,并认真观察这些因数看有什么发现,由于时间不够,我只要求孩子从因数的个数,最小,最大的因数考虑,没有对质数,合数,公因数进行渗透。找一个数的倍数因为方法比较易于掌握,没有过多的练习,二是激发他们想象一个数的倍数有什么特点。

针对这节课,课后老师们就这堂课认真评析,真诚的说出自己的观点,特别就知识的生长点、教学的重难点展开了讨论,特别是找一个数的因数,应注重方法的指导。由此,我们数学课堂教学应注意一下几点:知识的渗透点、练习发展点、层次切入点、设计巧妙点、教法多样点、语言动听点、管理到位点、应变灵活点。

这几点既是目标也是方向,相信我们在新的一学期,团结协作,勤奋务实,努力朝着目标前进。

《倍数和因数》教学反思9

不知不觉,我们又进行了第二单元的学习。第二单元的内容是《因数与倍数》,这部分内容与老教材相比变化很大,我觉得第二、四单元是本册教材中变化最大的单元,要引起足够的重视。

1、以往认识因数和倍数是借助于整除现象,“X能被X整除,或X能整除X”,所以X是X的因数,X是X的倍数。现在的教材完全不同了,2X3=6,所以2和3是6的因数,6是2和3的倍数,借助整除的模式na=b直接引出因数和倍数的概念。

2、以往数学教材中,概念教学的量很大。数的整除,因数(老教材称为约数),倍数,2、5、3的倍数的特征(老教材称为能被2、5、3整除的数的特征),质数,倒数,分解质因数,最大公因数(以往的教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。而现在新教材本单元只安排了因数和倍数,2、5、3的倍数的特征,质数合数。其它内容安排在了第四单元《分数的意义和性质》,借助约分引出公约数、公倍数的学习,改变了概念多而集中,抽象程度过高的现象。

3、以往求最大公约数,最小公倍数时,采用的方法是唯一的、固定的,也就是有短除法分解质因数,而新教材中鼓励方法多样化,不把它作为正式的内容教学,而是出现在教材的你知道吗中?不那么呆板了,尊重学生的思维差异。

可见,编者为体现新课标精神对本部分内容作了精心的调整,煞费苦心,可是学完了本单元的第一部分和第二部分内容,我对本单元的学习内容有了小小的疑问。这一单元内容分为因数和倍数,2、5、3的倍数的特征,质数和合数,我觉得第一部分内容和第三部分内容的关系很大,连续性强。知道了什么是因数和倍数,也会找一个数的因数和倍数了,那么就应该从找因数和个数问题上学习质数和合数。教材对质数和合数的学习内容设计较好,开门见山让学生找出1-20各数的因数,观察因数的个数有什么规律,再引出质数和合数的学习。可为什么在中间突然加上了2、5、3的倍数的特征?这样感觉前后内容失去了联系,不够自然流畅。所以我觉得可以把二三部分内容作为适当的调整,即因数和倍数,质数和合数,2、5、3的倍数的特征会比较好一些。

《倍数和因数》教学反思10

《因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。

  一、领会意图,做到用教材教。

我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。

但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!

  二、模式运用,做到灵活自然。

模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。

如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!

《倍数和因数》教学反思11

今天这堂课其实是有点匆忙的。课前的一个小游戏忘了,忘了让学生体会因数和倍数之间的相互联系和依存关系了。明天的课上补上。

满意的一点:模式的提练

在让学生根据算式说了谁是谁的倍数,谁是谁的因数之后,出示了想想做做的第一题,我加了一道:A×B=C,并且让学生用一道算式提练出因数和倍数之间的关系。结果学生都不知道如何表达。我把算式板书上黑板上,是因数×因数=倍数。而后,我又转过去用一道除法算式36÷9=4来让学生找一找谁是谁的因数,谁是谁的倍数,学生的反应都不错,马上就明白了因数和倍数之间的关系。

不满意的地方在于:对于找出36所有因数的有序思考没有强调。当我让学生们自主找出36的所有因数时,许多学生就茫然不知所谓,但是他们并不是不懂,只是不知道如何去写,所以我在黑板上挑选了一些学生的作业加以板书,让学生进行比较。

如:1、36、2、18、3、12、4、9、6

1、2、3、4、6、9、12、18、36

和36÷1=36,36÷2=18,36÷3=12

36÷4=9,36÷6=6

尤其是最后一种方法,我特别注意让学生评价一下这种思考方法的正确性。得出结论是这样思考是可行的。那么我接着告诉他们,这样思考的确是可以,不过,缺少的因数的提取,由此过渡到评价第一种方案和第二种方案,在这儿,我特别示范了一下写因数的方法,即从两边向中间包围。学生们在比较中找出了写因数的方法,明白了写出因数的格式。本来可以相机在这一步让学生体会寻找因数的有序性,结果一急,只是带过了一句。今天在补充习题上出现了问题,我抓了几个学生问为什么强调有序性,学生告诉我:因为可以看得清楚,因为不会遗漏。看起来班上的学生有这方面的意识,在做题目的时候还应该再稍稍提点一下,应该也就不成问题了。

《倍数和因数》教学反思12

XXXX小学 XXXXX

教学内容:教材例1、例2

教学目标

1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

教学重点:理解因数和倍数的概念。

教学难点:掌握求一个数的因数和倍数的方法。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

一、新课导入:

1.出示教材第5页例1。

12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

(1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

(2)分类:你能把上面的除法算式分类吗?

学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类

第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

二、探索新知:

(一)、明确因数与倍数的意义。(教学例1)

1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

2. 学生尝试。

教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。

3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。

4. 即时练习。指导学生完成教材第5页“做一做”。

小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

(二)、探索找一个数因数的方法。(教学例2)

1. 出示例2:18的因数有哪几个?

(1) 学生独立思考。

师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

(2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

(3)采用集合图的方法。

教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

(4)练习。让学生找出30的因数和36的因数,并组织交流。

30的因数有1,2,3,5,6,10,15,30。

36的因数有1,2,3,4,6,9,12,18,36。

三、巩固练习

指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。

四、课堂小结

师:通过本节课的学习,你有什么收获?

板书设计:

因数和倍数

12÷2=6 12是2和6的倍数

2和6是12的因数 18的因数有1,2,3,6,9,18。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

作业:教材第7页“练习二”第2(1)题。

第二单元:因数和倍数

第二课时:因数与倍数(2)

教学内容:教材P6例3及练习二第2(1)、3~8题。

教学目标:

知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

教学重点:掌握求一个数的倍数的方法。

教学难点:理解因数和倍数两者之间的关系。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

  一、复习导入

10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

  二、探索新

1.探索找倍数的方法。(教学例3)

出示例3:2的倍数有哪些?

师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

师:大家都是用的什么方法呢?

生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

生2:我也是用乘法,用2去乘1、乘2……

师:哪些同学也是用乘法做的?

师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

师:为什么?(因为2的倍数有无数个)

师:怎么办?(用省略号)

师:通过交流,你有什么发现?

引导学生初步体会2的倍数的个数是无限的。

追问:你能用集合图表示2的倍数吗?

学生填完后,教师组织学生进行核对。

(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

(1)一个数的最小因数是1,最大因数是它本身。

(2)一个数的最小倍数是它本身,没有最大倍数。

(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

三、巩固提升

1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。

学生独立完成全部练习后教师组织学生进行集体证正。

集体订正时,教师着重引导学生认识以下几点:

(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

2.利用求倍数的方法解决生活中的实际问题

出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

理解题意,分析解答。

教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

《倍数和因数》教学反思13

《公倍数和公因数》在新教材中改动很大,新教材将数的整除中有关分解质因数、互质数、用短除法求几个数的最大公因数和最小公倍数的教学内容精简掉了,新教材突出了让学生在现实情境中探究认识公倍数和最小公倍数,公因数和最大公因数,突出了运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法,注重让学生在解决问题的过程中,主动探索简洁的方法,进行有条理的思考,加强了数学与现实生活的联系。教学以后与以前的教材相比,主要的体会有以下几点。

一是在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。学生通过操作活动,感受公倍数和公因数的实际背景,缩短了抽象概念与学生已有知识经验之间的距离,有利于学生运用公倍数、最小公倍数、公因数和最大公因数的知识解决实际问题。

二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在教学中,让学生按要求自主操作,发现用怎样的长方形可以正好铺满一个正方形;用边长几厘米的正方形可以正好铺满一个长方形。在对所发现的不同的结果的过程中,引导学生联系除法算式进行思考,对直观操作活动进行初步的抽象。再把初步发现的结论进行类推,在此基础上,引导学生思考正方形的边长与长方形的长和宽有什么关系,再揭示公倍数和公因数,最小公倍数与最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合等图式,显示公倍数与公因数的意义。让学生经历了概念的形成过程。

三是删掉了一些与学生实际联系不够紧密、对后继学习没有影响的内容后,确实减轻了学生的负担,但是找两个数的最小公倍数和最大公因数时由于采用了列举法,学生得花较多的时间去找,当碰到的两个数都比较大时,不仅花时多,而且还容易出现遗漏或算错的情况。相比之下,用短除法来求两个数的最小公倍数和最大公因数就不会出现这方面的问题,所以我在实际教学中,先根据概念采用一一列举的方法求两个数的最小公倍数和最大公因数,待学生熟悉之后就教学生运用短除法求两个数的最小公倍数和最大公因数,这样的安排效果不错,学生也没感到增加了负担。

标签: 教学反思